PetClassifier / app.py
jha2ee's picture
Upload 3 files
2efbf0e
raw
history blame
1.01 kB
import gradio as gr
from fastai.vision.all import *
import skimage
learn = load_learner('export.pkl')
labels = learn.dls.vocab
def predict(img):
img = PILImage.create(img)
pred, pred_idx, probs = learn.predict(img)
return {labels[i]: float(probs[i]) for i in range(len(labels))}
title = "Pet Breed Classifier"
description = "A pet breed classifier trained on the Oxford Pets dataset with fastai. Created as a demo for Gradio " \
"and HuggingFace Spaces. "
article = "<p style='text-align: center'><a href='https://tmabraham.github.io/blog/gradio_hf_spaces_tutorial' " \
"target='_blank'>Blog post</a></p> "
examples = ['siamese.jpg']
interpretation = 'default'
enable_queue = True
gr.Interface(
fn=predict,
inputs=gr.inputs.Image(shape=(512, 512)),
outputs=gr.outputs.Label(num_top_classes=3),
title=title,
description=description,
article=article,
examples=examples,
interpretation=interpretation,
enable_queue=enable_queue
).launch()