Spaces:
Sleeping
Sleeping
import gradio as gr | |
from fastai.vision.all import * | |
import skimage | |
learn = load_learner('export.pkl') | |
labels = learn.dls.vocab | |
def predict(img): | |
img = PILImage.create(img) | |
pred, pred_idx, probs = learn.predict(img) | |
return {labels[i]: float(probs[i]) for i in range(len(labels))} | |
title = "Pet Breed Classifier" | |
description = "A pet breed classifier trained on the Oxford Pets dataset with fastai. Created as a demo for Gradio " \ | |
"and HuggingFace Spaces. " | |
article = "<p style='text-align: center'><a href='https://tmabraham.github.io/blog/gradio_hf_spaces_tutorial' " \ | |
"target='_blank'>Blog post</a></p> " | |
examples = ['siamese.jpg'] | |
interpretation = 'default' | |
enable_queue = True | |
gr.Interface( | |
fn=predict, | |
inputs=gr.inputs.Image(shape=(512, 512)), | |
outputs=gr.outputs.Label(num_top_classes=3), | |
title=title, | |
description=description, | |
article=article, | |
examples=examples, | |
interpretation=interpretation, | |
enable_queue=enable_queue | |
).launch() | |