File size: 7,671 Bytes
2e66664
 
 
 
c8618b9
2e66664
 
587b58f
64048e9
76df10e
 
 
 
2e66664
c8618b9
459a21c
6d70884
 
 
 
 
1a135ff
6d70884
 
 
 
 
 
d48a45a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6d6c0d5
c13752e
 
2e66664
 
6fc042a
 
e182234
 
 
d48a45a
efabd68
 
c13752e
 
e182234
6d70884
 
 
e182234
 
 
 
e6453cd
 
 
 
23b9137
e182234
2e66664
6d6c0d5
 
 
e30570e
6d6c0d5
 
 
 
 
 
 
 
 
 
 
 
 
 
e182234
76df10e
 
6d6c0d5
e182234
 
 
76df10e
e182234
 
 
76df10e
e182234
76df10e
 
d48a45a
6d70884
 
 
76df10e
d48a45a
3635837
 
 
76df10e
 
7d7bb34
76df10e
 
 
 
 
 
 
 
 
 
 
 
1a135ff
76df10e
2e66664
 
0a8ab10
2e66664
a990e23
 
 
 
bf776b2
a990e23
 
5cb1dd6
e3c9443
6d6c0d5
 
 
 
 
 
 
e182234
 
 
e3c9443
 
 
e182234
 
 
e3c9443
 
 
 
 
e182234
76df10e
e3c9443
e182234
76df10e
e3c9443
 
e182234
 
3635837
e182234
e30570e
3635837
 
 
 
 
 
 
 
76df10e
3635837
 
 
 
76df10e
 
 
3635837
76df10e
e30570e
e182234
 
 
76df10e
e182234
 
6d6c0d5
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
import gradio as gr
import torch
import soundfile as sf
import numpy as np
import yaml
from inference import MasteringStyleTransfer
from utils import download_youtube_audio
from config import args
import pyloudnorm as pyln
import tempfile
import os
import matplotlib.pyplot as plt
import io

mastering_transfer = MasteringStyleTransfer(args)

def denormalize_audio(audio, dtype=np.int16):
    """
    Denormalize the audio from the range [-1, 1] to the full range of the specified dtype.
    """
    if dtype == np.int16:
        audio = np.clip(audio, -1, 1)  # Ensure the input is in the range [-1, 1]
        return (audio * 32767).astype(np.int16)
    elif dtype == np.float32:
        return audio.astype(np.float32)
    else:
        raise ValueError("Unsupported dtype. Use np.int16 or np.float32.")

def loudness_normalize(audio, sample_rate, target_loudness=-12.0):
    # Ensure audio is float32
    if audio.dtype != np.float32:
        audio = audio.astype(np.float32)
    
    # If audio is mono, reshape to (samples, 1)
    if audio.ndim == 1:
        audio = audio.reshape(-1, 1)
    
    meter = pyln.Meter(sample_rate)  # create BS.1770 meter
    loudness = meter.integrated_loudness(audio)
    
    loudness_normalized_audio = pyln.normalize.loudness(audio, loudness, target_loudness)
    return loudness_normalized_audio

def process_audio(input_audio, reference_audio):
    output_audio, predicted_params, sr = mastering_transfer.process_audio(
        input_audio, reference_audio, reference_audio
    )
    
    param_output = mastering_transfer.get_param_output_string(predicted_params)
    
    # Convert output_audio to numpy array if it's a tensor
    if isinstance(output_audio, torch.Tensor):
        output_audio = output_audio.cpu().numpy()

    # # Normalize output audio
    # output_audio = loudness_normalize(output_audio, sr)
    print(output_audio.shape)
    print(f"sr: {sr}")
    
    # Denormalize the audio to int16
    output_audio = denormalize_audio(output_audio, dtype=np.int16)
    
    if output_audio.ndim == 1:
        output_audio = output_audio.reshape(-1, 1)
    elif output_audio.ndim > 2:
        output_audio = output_audio.squeeze()

    # Ensure the audio is in the correct shape (samples, channels)
    if output_audio.shape[1] > output_audio.shape[0]:
        output_audio = output_audio.transpose(1,0)
    
    return (sr, output_audio), param_output

def perform_ito(input_audio, reference_audio, ito_reference_audio, num_steps, optimizer, learning_rate, af_weights):
    if ito_reference_audio is None:
        ito_reference_audio = reference_audio

    ito_config = {
        'optimizer': optimizer,
        'learning_rate': learning_rate,
        'num_steps': num_steps,
        'af_weights': af_weights,
        'sample_rate': args.sample_rate
    }

    input_tensor = mastering_transfer.preprocess_audio(input_audio, args.sample_rate)
    reference_tensor = mastering_transfer.preprocess_audio(reference_audio, args.sample_rate)
    ito_reference_tensor = mastering_transfer.preprocess_audio(ito_reference_audio, args.sample_rate)

    initial_reference_feature = mastering_transfer.get_reference_embedding(reference_tensor)

    ito_log = ""
    loss_values = []
    for log_entry, current_output, current_params, step, loss in mastering_transfer.inference_time_optimization(
        input_tensor, ito_reference_tensor, ito_config, initial_reference_feature
    ):
        ito_log += log_entry
        ito_param_output = mastering_transfer.get_param_output_string(current_params)
        loss_values.append(loss)
        
        # Convert current_output to numpy array if it's a tensor
        if isinstance(current_output, torch.Tensor):
            current_output = current_output.cpu().numpy()
        
        # Normalize output audio
        current_output = loudness_normalize(current_output, args.sample_rate)
        
        # Denormalize the audio to int16
        current_output = denormalize_audio(current_output, dtype=np.int16)
        
        # Ensure the audio is in the correct shape (samples, channels)
        if current_output.ndim == 1:
            current_output = current_output.reshape(-1, 1)
        elif current_output.ndim > 2:
            current_output = current_output.squeeze()
        
        yield (args.sample_rate, current_output), ito_param_output, step, ito_log, loss_values

def plot_loss_curve(loss_values):
    plt.figure(figsize=(10, 6))
    plt.plot(loss_values)
    plt.title('ITO Loss Curve')
    plt.xlabel('Step')
    plt.ylabel('Loss')
    plt.grid(True)
    
    buf = io.BytesIO()
    plt.savefig(buf, format='png')
    buf.seek(0)
    return buf

""" APP display """
with gr.Blocks() as demo:
    gr.Markdown("# Mastering Style Transfer Demo")

    with gr.Tab("Upload Audio"):
        with gr.Row():
            input_audio = gr.Audio(label="Input Audio")
            reference_audio = gr.Audio(label="Reference Audio")
        
        process_button = gr.Button("Process Mastering Style Transfer")
        
        with gr.Row():
            output_audio = gr.Audio(label="Output Audio", type='numpy')
            param_output = gr.Textbox(label="Predicted Parameters", lines=5)

        process_button.click(
            process_audio, 
            inputs=[input_audio, reference_audio], 
            outputs=[output_audio, param_output]
        )

    gr.Markdown("## Inference Time Optimization (ITO)")
    
    with gr.Row():
        ito_reference_audio = gr.Audio(label="ITO Reference Audio (optional)")
        with gr.Column():
            num_steps = gr.Slider(minimum=1, maximum=100, value=10, step=1, label="Number of Steps")
            optimizer = gr.Dropdown(["Adam", "RAdam", "SGD"], value="RAdam", label="Optimizer")
            learning_rate = gr.Slider(minimum=0.0001, maximum=0.1, value=0.001, step=0.0001, label="Learning Rate")
            af_weights = gr.Textbox(label="AudioFeatureLoss Weights (comma-separated)", value="0.1,0.001,1.0,1.0,0.1")
        
    ito_button = gr.Button("Perform ITO")

    with gr.Row():
        with gr.Column():
            ito_output_audio = gr.Audio(label="ITO Output Audio")
            ito_param_output = gr.Textbox(label="ITO Predicted Parameters", lines=15)
        with gr.Column():
            ito_steps_taken = gr.Number(label="ITO Steps Taken")
            ito_loss_plot = gr.Image(label="ITO Loss Curve")
            ito_log = gr.Textbox(label="ITO Log", lines=10)

    def run_ito(input_audio, reference_audio, ito_reference_audio, num_steps, optimizer, learning_rate, af_weights):
        af_weights = [float(w.strip()) for w in af_weights.split(',')]
        ito_generator = perform_ito(
            input_audio, reference_audio, ito_reference_audio, num_steps, optimizer, learning_rate, af_weights
        )
        
        # Initialize variables to store the final results
        final_audio = None
        final_params = None
        final_steps = 0
        final_log = ""
        
        # Iterate through the generator to get the final results
        for audio, params, steps, log, losses in ito_generator:
            final_audio = audio
            final_params = params
            final_steps = steps
            final_log = log
            loss_values = losses

        loss_plot = plot_loss_curve(loss_values)
        
        return final_audio, final_params, final_steps, final_log, loss_plot

    ito_button.click(
        run_ito,
        inputs=[input_audio, reference_audio, ito_reference_audio, num_steps, optimizer, learning_rate, af_weights],
        outputs=[ito_output_audio, ito_param_output, ito_steps_taken, ito_log, ito_loss_plot]
    )

demo.launch()