Spaces:
Sleeping
Sleeping
File size: 7,671 Bytes
2e66664 c8618b9 2e66664 587b58f 64048e9 76df10e 2e66664 c8618b9 459a21c 6d70884 1a135ff 6d70884 d48a45a 6d6c0d5 c13752e 2e66664 6fc042a e182234 d48a45a efabd68 c13752e e182234 6d70884 e182234 e6453cd 23b9137 e182234 2e66664 6d6c0d5 e30570e 6d6c0d5 e182234 76df10e 6d6c0d5 e182234 76df10e e182234 76df10e e182234 76df10e d48a45a 6d70884 76df10e d48a45a 3635837 76df10e 7d7bb34 76df10e 1a135ff 76df10e 2e66664 0a8ab10 2e66664 a990e23 bf776b2 a990e23 5cb1dd6 e3c9443 6d6c0d5 e182234 e3c9443 e182234 e3c9443 e182234 76df10e e3c9443 e182234 76df10e e3c9443 e182234 3635837 e182234 e30570e 3635837 76df10e 3635837 76df10e 3635837 76df10e e30570e e182234 76df10e e182234 6d6c0d5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 |
import gradio as gr
import torch
import soundfile as sf
import numpy as np
import yaml
from inference import MasteringStyleTransfer
from utils import download_youtube_audio
from config import args
import pyloudnorm as pyln
import tempfile
import os
import matplotlib.pyplot as plt
import io
mastering_transfer = MasteringStyleTransfer(args)
def denormalize_audio(audio, dtype=np.int16):
"""
Denormalize the audio from the range [-1, 1] to the full range of the specified dtype.
"""
if dtype == np.int16:
audio = np.clip(audio, -1, 1) # Ensure the input is in the range [-1, 1]
return (audio * 32767).astype(np.int16)
elif dtype == np.float32:
return audio.astype(np.float32)
else:
raise ValueError("Unsupported dtype. Use np.int16 or np.float32.")
def loudness_normalize(audio, sample_rate, target_loudness=-12.0):
# Ensure audio is float32
if audio.dtype != np.float32:
audio = audio.astype(np.float32)
# If audio is mono, reshape to (samples, 1)
if audio.ndim == 1:
audio = audio.reshape(-1, 1)
meter = pyln.Meter(sample_rate) # create BS.1770 meter
loudness = meter.integrated_loudness(audio)
loudness_normalized_audio = pyln.normalize.loudness(audio, loudness, target_loudness)
return loudness_normalized_audio
def process_audio(input_audio, reference_audio):
output_audio, predicted_params, sr = mastering_transfer.process_audio(
input_audio, reference_audio, reference_audio
)
param_output = mastering_transfer.get_param_output_string(predicted_params)
# Convert output_audio to numpy array if it's a tensor
if isinstance(output_audio, torch.Tensor):
output_audio = output_audio.cpu().numpy()
# # Normalize output audio
# output_audio = loudness_normalize(output_audio, sr)
print(output_audio.shape)
print(f"sr: {sr}")
# Denormalize the audio to int16
output_audio = denormalize_audio(output_audio, dtype=np.int16)
if output_audio.ndim == 1:
output_audio = output_audio.reshape(-1, 1)
elif output_audio.ndim > 2:
output_audio = output_audio.squeeze()
# Ensure the audio is in the correct shape (samples, channels)
if output_audio.shape[1] > output_audio.shape[0]:
output_audio = output_audio.transpose(1,0)
return (sr, output_audio), param_output
def perform_ito(input_audio, reference_audio, ito_reference_audio, num_steps, optimizer, learning_rate, af_weights):
if ito_reference_audio is None:
ito_reference_audio = reference_audio
ito_config = {
'optimizer': optimizer,
'learning_rate': learning_rate,
'num_steps': num_steps,
'af_weights': af_weights,
'sample_rate': args.sample_rate
}
input_tensor = mastering_transfer.preprocess_audio(input_audio, args.sample_rate)
reference_tensor = mastering_transfer.preprocess_audio(reference_audio, args.sample_rate)
ito_reference_tensor = mastering_transfer.preprocess_audio(ito_reference_audio, args.sample_rate)
initial_reference_feature = mastering_transfer.get_reference_embedding(reference_tensor)
ito_log = ""
loss_values = []
for log_entry, current_output, current_params, step, loss in mastering_transfer.inference_time_optimization(
input_tensor, ito_reference_tensor, ito_config, initial_reference_feature
):
ito_log += log_entry
ito_param_output = mastering_transfer.get_param_output_string(current_params)
loss_values.append(loss)
# Convert current_output to numpy array if it's a tensor
if isinstance(current_output, torch.Tensor):
current_output = current_output.cpu().numpy()
# Normalize output audio
current_output = loudness_normalize(current_output, args.sample_rate)
# Denormalize the audio to int16
current_output = denormalize_audio(current_output, dtype=np.int16)
# Ensure the audio is in the correct shape (samples, channels)
if current_output.ndim == 1:
current_output = current_output.reshape(-1, 1)
elif current_output.ndim > 2:
current_output = current_output.squeeze()
yield (args.sample_rate, current_output), ito_param_output, step, ito_log, loss_values
def plot_loss_curve(loss_values):
plt.figure(figsize=(10, 6))
plt.plot(loss_values)
plt.title('ITO Loss Curve')
plt.xlabel('Step')
plt.ylabel('Loss')
plt.grid(True)
buf = io.BytesIO()
plt.savefig(buf, format='png')
buf.seek(0)
return buf
""" APP display """
with gr.Blocks() as demo:
gr.Markdown("# Mastering Style Transfer Demo")
with gr.Tab("Upload Audio"):
with gr.Row():
input_audio = gr.Audio(label="Input Audio")
reference_audio = gr.Audio(label="Reference Audio")
process_button = gr.Button("Process Mastering Style Transfer")
with gr.Row():
output_audio = gr.Audio(label="Output Audio", type='numpy')
param_output = gr.Textbox(label="Predicted Parameters", lines=5)
process_button.click(
process_audio,
inputs=[input_audio, reference_audio],
outputs=[output_audio, param_output]
)
gr.Markdown("## Inference Time Optimization (ITO)")
with gr.Row():
ito_reference_audio = gr.Audio(label="ITO Reference Audio (optional)")
with gr.Column():
num_steps = gr.Slider(minimum=1, maximum=100, value=10, step=1, label="Number of Steps")
optimizer = gr.Dropdown(["Adam", "RAdam", "SGD"], value="RAdam", label="Optimizer")
learning_rate = gr.Slider(minimum=0.0001, maximum=0.1, value=0.001, step=0.0001, label="Learning Rate")
af_weights = gr.Textbox(label="AudioFeatureLoss Weights (comma-separated)", value="0.1,0.001,1.0,1.0,0.1")
ito_button = gr.Button("Perform ITO")
with gr.Row():
with gr.Column():
ito_output_audio = gr.Audio(label="ITO Output Audio")
ito_param_output = gr.Textbox(label="ITO Predicted Parameters", lines=15)
with gr.Column():
ito_steps_taken = gr.Number(label="ITO Steps Taken")
ito_loss_plot = gr.Image(label="ITO Loss Curve")
ito_log = gr.Textbox(label="ITO Log", lines=10)
def run_ito(input_audio, reference_audio, ito_reference_audio, num_steps, optimizer, learning_rate, af_weights):
af_weights = [float(w.strip()) for w in af_weights.split(',')]
ito_generator = perform_ito(
input_audio, reference_audio, ito_reference_audio, num_steps, optimizer, learning_rate, af_weights
)
# Initialize variables to store the final results
final_audio = None
final_params = None
final_steps = 0
final_log = ""
# Iterate through the generator to get the final results
for audio, params, steps, log, losses in ito_generator:
final_audio = audio
final_params = params
final_steps = steps
final_log = log
loss_values = losses
loss_plot = plot_loss_curve(loss_values)
return final_audio, final_params, final_steps, final_log, loss_plot
ito_button.click(
run_ito,
inputs=[input_audio, reference_audio, ito_reference_audio, num_steps, optimizer, learning_rate, af_weights],
outputs=[ito_output_audio, ito_param_output, ito_steps_taken, ito_log, ito_loss_plot]
)
demo.launch()
|