File size: 13,435 Bytes
2e66664
 
 
 
c8618b9
2e66664
 
587b58f
2e66664
c8618b9
459a21c
6d70884
 
 
 
 
1a135ff
6d70884
 
 
 
 
 
d48a45a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6d6c0d5
 
71c3a7e
2e66664
 
6fc042a
 
e182234
 
 
d48a45a
 
 
e182234
6d70884
 
 
e182234
 
 
 
e6453cd
 
 
 
 
23b9137
 
 
e182234
2e66664
6d6c0d5
 
 
e30570e
6d6c0d5
 
 
 
 
 
 
 
 
 
 
 
 
 
e182234
 
6d6c0d5
e182234
 
 
 
 
 
7d7bb34
e182234
d48a45a
 
 
6d70884
 
 
d48a45a
3635837
 
 
7d7bb34
 
 
 
 
e182234
e30570e
1a135ff
 
2e66664
 
0a8ab10
2e66664
a990e23
 
 
 
bf776b2
a990e23
 
5cb1dd6
a990e23
6d6c0d5
 
 
 
 
 
 
e182234
 
 
 
 
 
 
 
 
 
 
a990e23
e182234
 
 
 
 
 
 
 
 
3635837
e182234
e30570e
3635837
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e30570e
e182234
 
 
 
 
 
6d6c0d5
 
 
d48a45a
 
6d6c0d5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e30570e
6d6c0d5
 
e30570e
6d6c0d5
 
e30570e
6d6c0d5
 
e30570e
6d6c0d5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e30570e
6d6c0d5
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
import gradio as gr
import torch
import soundfile as sf
import numpy as np
import yaml
from inference import MasteringStyleTransfer
from utils import download_youtube_audio
from config import args

mastering_transfer = MasteringStyleTransfer(args)

def denormalize_audio(audio, dtype=np.int16):
    """
    Denormalize the audio from the range [-1, 1] to the full range of the specified dtype.
    """
    if dtype == np.int16:
        audio = np.clip(audio, -1, 1)  # Ensure the input is in the range [-1, 1]
        return (audio * 32767).astype(np.int16)
    elif dtype == np.float32:
        return audio.astype(np.float32)
    else:
        raise ValueError("Unsupported dtype. Use np.int16 or np.float32.")

def loudness_normalize(audio, sample_rate, target_loudness=-12.0):
    # Ensure audio is float32
    if audio.dtype != np.float32:
        audio = audio.astype(np.float32)
    
    # If audio is mono, reshape to (samples, 1)
    if audio.ndim == 1:
        audio = audio.reshape(-1, 1)
    
    meter = pyln.Meter(sample_rate)  # create BS.1770 meter
    loudness = meter.integrated_loudness(audio)
    
    loudness_normalized_audio = pyln.normalize.loudness(audio, loudness, target_loudness)
    return loudness_normalized_audio

def process_audio(input_audio, reference_audio):
    output_audio, predicted_params, _, _, _, sr = mastering_transfer.process_audio(
        input_audio, reference_audio, reference_audio, {}, False
    )
    
    param_output = mastering_transfer.get_param_output_string(predicted_params)
    
    # Convert output_audio to numpy array if it's a tensor
    if isinstance(output_audio, torch.Tensor):
        output_audio = output_audio.cpu().numpy()

    # Normalize output audio
    output_audio = loudness_normalize(output_audio, sr)
    
    # Denormalize the audio to int16
    output_audio = denormalize_audio(output_audio, dtype=np.int16)
    
    if output_audio.ndim == 1:
        output_audio = output_audio.reshape(-1, 1)
    elif output_audio.ndim > 2:
        output_audio = output_audio.squeeze()

    # Ensure the audio is in the correct shape (samples, channels)
    if output_audio.shape[1] > output_audio.shape[0]:
        output_audio = output_audio.transpose(1,0)

    print(output_audio.shape)
    print(param_output)
    
    return (sr, output_audio), param_output

def perform_ito(input_audio, reference_audio, ito_reference_audio, num_steps, optimizer, learning_rate, af_weights):
    if ito_reference_audio is None:
        ito_reference_audio = reference_audio

    ito_config = {
        'optimizer': optimizer,
        'learning_rate': learning_rate,
        'num_steps': num_steps,
        'af_weights': af_weights,
        'sample_rate': args.sample_rate
    }

    input_tensor = mastering_transfer.preprocess_audio(input_audio, args.sample_rate)
    reference_tensor = mastering_transfer.preprocess_audio(reference_audio, args.sample_rate)
    ito_reference_tensor = mastering_transfer.preprocess_audio(ito_reference_audio, args.sample_rate)

    initial_reference_feature = mastering_transfer.get_reference_embedding(reference_tensor)

    ito_log = ""
    for log_entry, current_output, current_params, step in mastering_transfer.inference_time_optimization(
        input_tensor, ito_reference_tensor, ito_config, initial_reference_feature
    ):
        ito_log += log_entry
        ito_param_output = mastering_transfer.get_param_output_string(current_params)
        
        # Convert current_output to numpy array if it's a tensor
        if isinstance(current_output, torch.Tensor):
            current_output = current_output.detach().cpu().numpy()
        
        # Normalize output audio
        current_output = loudness_normalize(current_output, args.sample_rate)
        
        # Denormalize the audio to int16
        current_output = denormalize_audio(current_output, dtype=np.int16)
        
        if current_output.ndim == 1:
            current_output = current_output.reshape(-1, 1)
        elif current_output.ndim > 2:
            current_output = current_output.squeeze()

        # Ensure the audio is in the correct shape (samples, channels)
        if current_output.shape[1] > current_output.shape[0]:
            current_output = current_output.transpose(1,0)

        yield (args.sample_rate, current_output), ito_param_output, step, ito_log



with gr.Blocks() as demo:
    gr.Markdown("# Mastering Style Transfer Demo")

    with gr.Tab("Upload Audio"):
        with gr.Row():
            input_audio = gr.Audio(label="Input Audio")
            reference_audio = gr.Audio(label="Reference Audio")
        
        process_button = gr.Button("Process Mastering Style Transfer")
        
        with gr.Row():
            output_audio = gr.Audio(label="Output Audio", type='numpy')
            param_output = gr.Textbox(label="Predicted Parameters", lines=10)

        process_button.click(
            process_audio, 
            inputs=[input_audio, reference_audio], 
            outputs=[output_audio, param_output]
        )

    gr.Markdown("## Inference Time Optimization (ITO)")
    
    with gr.Row():
        with gr.Column(scale=2):
            ito_reference_audio = gr.Audio(label="ITO Reference Audio (optional)")
            num_steps = gr.Slider(minimum=1, maximum=1000, value=100, step=1, label="Number of Steps")
            optimizer = gr.Dropdown(["Adam", "RAdam", "SGD"], value="RAdam", label="Optimizer")
            learning_rate = gr.Slider(minimum=0.0001, maximum=0.1, value=0.001, step=0.0001, label="Learning Rate")
            af_weights = gr.Textbox(label="AudioFeatureLoss Weights (comma-separated)", value="0.1,0.001,1.0,1.0,0.1")
            
            ito_button = gr.Button("Perform ITO")
            
            ito_output_audio = gr.Audio(label="ITO Output Audio")
            ito_param_output = gr.Textbox(label="ITO Predicted Parameters", lines=10)
            ito_steps_taken = gr.Number(label="ITO Steps Taken")
        
        with gr.Column(scale=1):
            ito_log = gr.Textbox(label="ITO Log", lines=30)

    def run_ito(input_audio, reference_audio, ito_reference_audio, num_steps, optimizer, learning_rate, af_weights):
        af_weights = [float(w.strip()) for w in af_weights.split(',')]
        ito_generator = perform_ito(
            input_audio, reference_audio, ito_reference_audio, num_steps, optimizer, learning_rate, af_weights
        )
        
        # Initialize variables to store the final results
        final_audio = None
        final_params = None
        final_steps = 0
        final_log = ""
        
        # Iterate through the generator to get the final results
        for audio, params, steps, log in ito_generator:
            final_audio = audio
            final_params = params
            final_steps = steps
            final_log = log
        
        return final_audio, final_params, final_steps, final_log

    ito_button.click(
        run_ito,
        inputs=[input_audio, reference_audio, ito_reference_audio, num_steps, optimizer, learning_rate, af_weights],
        outputs=[ito_output_audio, ito_param_output, ito_steps_taken, ito_log]
    )

demo.launch()




# import gradio as gr
# import torch
# import soundfile as sf
# import numpy as np
# import yaml
# from inference import MasteringStyleTransfer
# from utils import download_youtube_audio
# from config import args

# mastering_transfer = MasteringStyleTransfer(args)

# def process_audio(input_audio, reference_audio, perform_ito, ito_reference_audio=None):
#     # Process the audio files
#     output_audio, predicted_params, ito_output_audio, ito_predicted_params, ito_log, sr = mastering_transfer.process_audio(
#         input_audio, reference_audio, ito_reference_audio if ito_reference_audio else reference_audio, {}, perform_ito
#     )
    
#     # Generate parameter output strings
#     param_output = mastering_transfer.get_param_output_string(predicted_params)
#     ito_param_output = mastering_transfer.get_param_output_string(ito_predicted_params) if ito_predicted_params is not None else "ITO not performed"
    
#     # Generate top 10 differences if ITO was performed
#     top_10_diff = mastering_transfer.get_top_10_diff_string(predicted_params, ito_predicted_params) if ito_predicted_params is not None else "ITO not performed"
    
#     return "output_mastered.wav", "ito_output_mastered.wav" if ito_output_audio is not None else None, param_output, ito_param_output, top_10_diff, ito_log

# def process_with_ito(input_audio, reference_audio, perform_ito, use_same_reference, ito_reference_audio):
#     ito_ref = reference_audio if use_same_reference else ito_reference_audio
#     return process_audio(input_audio, reference_audio, perform_ito, ito_ref)

# def process_youtube_with_ito(input_url, reference_url, perform_ito, use_same_reference, ito_reference_url):
#     input_audio = download_youtube_audio(input_url)
#     reference_audio = download_youtube_audio(reference_url)
#     ito_ref = reference_audio if use_same_reference else download_youtube_audio(ito_reference_url)
    
#     output_audio, predicted_params, ito_output_audio, ito_predicted_params, ito_log, sr = mastering_transfer.process_audio(
#         input_audio, reference_audio, ito_ref, {}, perform_ito, log_ito=True
#     )
    
#     param_output = mastering_transfer.get_param_output_string(predicted_params)
#     ito_param_output = mastering_transfer.get_param_output_string(ito_predicted_params) if ito_predicted_params is not None else "ITO not performed"
#     top_10_diff = mastering_transfer.get_top_10_diff_string(predicted_params, ito_predicted_params) if ito_predicted_params is not None else "ITO not performed"
    
#     return "output_mastered_yt.wav", "ito_output_mastered_yt.wav" if ito_output_audio is not None else None, param_output, ito_param_output, top_10_diff, ito_log


# with gr.Blocks() as demo:
#     gr.Markdown("# Mastering Style Transfer Demo")

#     with gr.Tab("Upload Audio"):
#         input_audio = gr.Audio(label="Input Audio")
#         reference_audio = gr.Audio(label="Reference Audio")
#         perform_ito = gr.Checkbox(label="Perform ITO")
#         with gr.Column(visible=False) as ito_options:
#             use_same_reference = gr.Checkbox(label="Use same reference audio for ITO", value=True)
#             ito_reference_audio = gr.Audio(label="ITO Reference Audio", visible=False)
        
#         def update_ito_options(perform_ito):
#             return gr.Column.update(visible=perform_ito)
        
#         def update_ito_reference(use_same):
#             return gr.Audio.update(visible=not use_same)
        
#         perform_ito.change(fn=update_ito_options, inputs=perform_ito, outputs=ito_options)
#         use_same_reference.change(fn=update_ito_reference, inputs=use_same_reference, outputs=ito_reference_audio)
        
#         submit_button = gr.Button("Process")
#         output_audio = gr.Audio(label="Output Audio")
#         ito_output_audio = gr.Audio(label="ITO Output Audio")
#         param_output = gr.Textbox(label="Predicted Parameters", lines=10)
#         ito_param_output = gr.Textbox(label="ITO Predicted Parameters", lines=10)
#         top_10_diff = gr.Textbox(label="Top 10 Parameter Differences", lines=10)
#         ito_log = gr.Textbox(label="ITO Log", lines=20)
        
#         submit_button.click(
#             process_with_ito, 
#             inputs=[input_audio, reference_audio, perform_ito, use_same_reference, ito_reference_audio], 
#             outputs=[output_audio, ito_output_audio, param_output, ito_param_output, top_10_diff, ito_log]
#         )

#     with gr.Tab("YouTube URLs"):
#         input_url = gr.Textbox(label="Input YouTube URL")
#         reference_url = gr.Textbox(label="Reference YouTube URL")
#         perform_ito_yt = gr.Checkbox(label="Perform ITO")
#         with gr.Column(visible=False) as ito_options_yt:
#             use_same_reference_yt = gr.Checkbox(label="Use same reference audio for ITO", value=True)
#             ito_reference_url = gr.Textbox(label="ITO Reference YouTube URL", visible=False)
        
#         def update_ito_options_yt(perform_ito):
#             return gr.Column.update(visible=perform_ito)
        
#         def update_ito_reference_yt(use_same):
#             return gr.Textbox.update(visible=not use_same)
        
#         perform_ito_yt.change(fn=update_ito_options_yt, inputs=perform_ito_yt, outputs=ito_options_yt)
#         use_same_reference_yt.change(fn=update_ito_reference_yt, inputs=use_same_reference_yt, outputs=ito_reference_url)
        
#         submit_button_yt = gr.Button("Process")
#         output_audio_yt = gr.Audio(label="Output Audio")
#         ito_output_audio_yt = gr.Audio(label="ITO Output Audio")
#         param_output_yt = gr.Textbox(label="Predicted Parameters", lines=10)
#         ito_param_output_yt = gr.Textbox(label="ITO Predicted Parameters", lines=10)
#         top_10_diff_yt = gr.Textbox(label="Top 10 Parameter Differences", lines=10)
#         ito_log_yt = gr.Textbox(label="ITO Log", lines=20)

#         submit_button_yt.click(
#             process_youtube_with_ito, 
#             inputs=[input_url, reference_url, perform_ito_yt, use_same_reference_yt, ito_reference_url], 
#             outputs=[output_audio_yt, ito_output_audio_yt, param_output_yt, ito_param_output_yt, top_10_diff_yt, ito_log_yt]
#         )
    
# demo.launch()