|
""" |
|
Developers: |
|
1. Lewis Kamau Kimaru |
|
2. Samuel Kalya Kipsang |
|
|
|
Function: chat with pdf documents in different languages |
|
|
|
""" |
|
from langchain.text_splitter import CharacterTextSplitter |
|
from langchain.embeddings import HuggingFaceBgeEmbeddings |
|
from langchain.vectorstores import FAISS |
|
from langchain.chat_models import ChatOpenAI |
|
from langchain.memory import ConversationBufferMemory |
|
from langchain.chains import ConversationalRetrievalChain |
|
from langchain.llms import HuggingFaceHub |
|
|
|
from typing import Union |
|
|
|
from dotenv import load_dotenv |
|
from PyPDF2 import PdfReader |
|
import streamlit as st |
|
import requests |
|
import json |
|
import os |
|
|
|
|
|
os.environ["HUGGINGFACEHUB_API_TOKEN"] = st.secrets['huggingface_token'] |
|
|
|
|
|
st.set_page_config(page_title="SemaNaPDF", page_icon="📚",) |
|
|
|
|
|
Public_Url = 'https://jikoni-tmodel.hf.space' |
|
|
|
def translate(userinput, target_lang, source_lang=None): |
|
if source_lang: |
|
url = f"{Public_Url}/translate_enter/" |
|
data = { |
|
"userinput": userinput, |
|
"source_lang": source_lang, |
|
"target_lang": target_lang, |
|
} |
|
response = requests.post(url, json=data) |
|
result = response.json() |
|
print(type(result)) |
|
source_lange = source_lang |
|
translation = result['translated_text'] |
|
else: |
|
url = f"{Public_Url}/translate_detect/" |
|
data = { |
|
"userinput": userinput, |
|
"target_lang": target_lang, |
|
} |
|
response = requests.post(url, json=data) |
|
result = response.json() |
|
source_lange = result['source_language'] |
|
translation = result['translated_text'] |
|
return source_lange, translation |
|
|
|
def get_pdf_text(pdf : Union[str, bytes, bytearray]) -> str: |
|
reader = PdfReader(pdf) |
|
pdf_text = '' |
|
for page in (reader.pages): |
|
text = page.extract_text() |
|
if text: |
|
pdf_text += text |
|
return text |
|
|
|
def get_text_chunks(text:str) ->list: |
|
text_splitter = CharacterTextSplitter( |
|
separator="\n", chunk_size=1500, chunk_overlap=300, length_function=len |
|
) |
|
chunks = text_splitter.split_text(text) |
|
return chunks |
|
|
|
def get_vectorstore(text_chunks : list) -> FAISS: |
|
model = "sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2" |
|
encode_kwargs = { |
|
"normalize_embeddings": True |
|
} |
|
embeddings = HuggingFaceBgeEmbeddings( |
|
model_name=model, encode_kwargs=encode_kwargs, model_kwargs={"device": "cpu"} |
|
) |
|
vectorstore = FAISS.from_texts(texts=text_chunks, embedding=embeddings) |
|
return vectorstore |
|
|
|
def get_conversation_chain(vectorstore:FAISS) -> ConversationalRetrievalChain: |
|
llm = HuggingFaceHub( |
|
repo_id="TheBloke/Mixtral-8x7B-Instruct-v0.1-GGUF", |
|
task="text-generation", |
|
model_kwargs={"temperature": 0.5, "max_length": 1048} |
|
) |
|
|
|
memory = ConversationBufferMemory(memory_key="chat_history", return_messages=True) |
|
conversation_chain = ConversationalRetrievalChain.from_llm( |
|
llm=llm, retriever=vectorstore.as_retriever(), memory=memory |
|
) |
|
return conversation_chain |
|
|
|
st.markdown (""" |
|
<style> div.stSpinner > div { |
|
text-align:center; |
|
text-align:center; |
|
align-items: center; |
|
justify-content: center; |
|
} |
|
</style>""", unsafe_allow_html=True) |
|
|
|
footer = """ |
|
<style> |
|
.footer { |
|
position: fixed; |
|
bottom: 0; |
|
right: 0; |
|
background-color: #f8f9fa; |
|
padding: 10px; |
|
text-align: right; |
|
width: 100%; |
|
} |
|
</style> |
|
<div class="footer"> |
|
©2023 Lewis Kimaru. All rights reserved. |
|
</div> |
|
""" |
|
|
|
def main(): |
|
st.title("SemaNaPDF📚") |
|
|
|
pdf = st.file_uploader("Upload a PDF Document", type="pdf") |
|
if pdf is not None: |
|
with st.spinner(""): |
|
|
|
raw_text = get_pdf_text(pdf) |
|
|
|
|
|
text_chunks = get_text_chunks(raw_text) |
|
|
|
|
|
vectorstore = get_vectorstore(text_chunks) |
|
|
|
|
|
st.session_state.conversation = get_conversation_chain(vectorstore) |
|
st.info("done") |
|
|
|
|
|
if "messages" not in st.session_state: |
|
st.session_state.messages = [] |
|
|
|
for message in st.session_state.messages: |
|
with st.chat_message(message["role"]): |
|
st.markdown(message["content"]) |
|
|
|
if user_question := st.chat_input("Ask your document anything ......?"): |
|
with st.chat_message("user"): |
|
st.markdown(user_question) |
|
|
|
user_langd, Queryd = translate(user_question, 'eng_Latn') |
|
st.session_state.messages.append({"role": "user", "content": user_question}) |
|
response = st.session_state.conversation({"question": Queryd}) |
|
print(response) |
|
st.session_state.chat_history = response["chat_history"] |
|
|
|
output = translate(response['answer'], user_langd, 'eng_Latn')[1] |
|
with st.chat_message("assistant"): |
|
|
|
st.markdown(output) |
|
st.session_state.messages.append({"role": "assistant", "content": response['answer']}) |
|
|
|
|
|
st.markdown(footer, unsafe_allow_html=True) |
|
|
|
if __name__ == '__main__': |
|
main() |
|
|