File size: 6,800 Bytes
a95e64c
 
 
 
18680df
a95e64c
 
 
 
 
18680df
 
 
a95e64c
 
 
 
18680df
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a95e64c
18680df
 
 
 
 
 
 
 
 
 
 
 
a95e64c
 
 
 
 
 
 
 
 
 
4e9010c
a95e64c
 
 
 
 
 
18680df
a95e64c
 
da7f7e0
18680df
a95e64c
 
da7f7e0
 
a95e64c
4e9010c
a95e64c
 
 
 
 
 
18680df
a95e64c
 
 
09330c2
a95e64c
 
18680df
 
 
 
 
 
 
a95e64c
 
da7f7e0
18680df
 
 
 
 
 
 
 
da7f7e0
18680df
da7f7e0
 
18680df
 
 
 
 
 
 
da7f7e0
 
 
 
 
 
 
18680df
da7f7e0
 
 
 
18680df
da7f7e0
 
 
18680df
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a95e64c
18680df
 
 
 
 
 
 
 
 
 
 
 
 
 
da7f7e0
a95e64c
 
 
 
 
 
1db1226
a95e64c
b2c69ac
 
c9fe67e
4890ad0
a95e64c
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
import soundfile as sf
import datetime
from pyctcdecode import BeamSearchDecoderCTC
import torch
import json
import os
import time
import gc
import gradio as gr
import librosa
from transformers import Wav2Vec2ForCTC, Wav2Vec2ProcessorWithLM, AutoModelForSeq2SeqLM, AutoTokenizer, AutoProcessor
from huggingface_hub import hf_hub_download
from torchaudio.models.decoder import ctc_decoder
from numba import cuda

# load pretrained model
model = Wav2Vec2ForCTC.from_pretrained("facebook/mms-1b-all")
processor = AutoProcessor.from_pretrained("facebook/mms-1b-all")

lm_decoding_config = {}
lm_decoding_configfile = hf_hub_download(
    repo_id="facebook/mms-cclms",
    filename="decoding_config.json",
    subfolder="mms-1b-all",
)

with open(lm_decoding_configfile) as f:
    lm_decoding_config = json.loads(f.read())

# allow language model decoding for "eng"

decoding_config = lm_decoding_config["amh"]

lm_file = hf_hub_download(
    repo_id="facebook/mms-cclms",
    filename=decoding_config["lmfile"].rsplit("/", 1)[1],
    subfolder=decoding_config["lmfile"].rsplit("/", 1)[0],
)
token_file = hf_hub_download(
    repo_id="facebook/mms-cclms",
    filename=decoding_config["tokensfile"].rsplit("/", 1)[1],
    subfolder=decoding_config["tokensfile"].rsplit("/", 1)[0],
)
lexicon_file = None
if decoding_config["lexiconfile"] is not None:
    lexicon_file = hf_hub_download(
        repo_id="facebook/mms-cclms",
        filename=decoding_config["lexiconfile"].rsplit("/", 1)[1],
        subfolder=decoding_config["lexiconfile"].rsplit("/", 1)[0],
    )

beam_search_decoder = ctc_decoder(
    lexicon="./vocab_correct_cleaned.txt",
    tokens=token_file,
    lm=lm_file,
    nbest=1,
    beam_size=500,
    beam_size_token=50,
    lm_weight=float(decoding_config["lmweight"]),
    word_score=float(decoding_config["wordscore"]),
    sil_score=float(decoding_config["silweight"]),
    blank_token="<s>",
)

#Define Functions

#convert time into .sbv format
def format_time(seconds):
    # Convert seconds to hh:mm:ss,ms format
    return str(datetime.timedelta(seconds=seconds)).replace('.', ',')

#Convert Video/Audio into 16K wav file
def preprocessAudio(audioFile):
    os.system(f"ffmpeg -y -i {audioFile.name} -ar 16000 ./audioToConvert.wav")

#Transcribe!!!
def Transcribe(file):
    device = "cuda:0" if torch.cuda.is_available() else "cpu"
    start_time = time.time()
    model.load_adapter("amh")
    processor.tokenizer.set_target_lang("amh")

    preprocessAudio(file)
    block_size = 30
    batch_size = 8  # or whatever number you choose

    transcripts = []
    speech_segments = []

    stream = librosa.stream(
        "./audioToConvert.wav",
        block_length=block_size,
        frame_length=16000,
        hop_length=16000
    )

    model.to(device)
    print(f"Model loaded to {device}: Entering transcription phase")

    #Code for timestamping
    encoding_start = 0
    encoding_end = 0
    sbv_file = open("subtitle.sbv", "w")

    # Define batch size
    batch_size = 11

    # Create an empty list to hold batches
    batch = []

    for speech_segment in stream:
        if len(speech_segment.shape) > 1:
            speech_segment = speech_segment[:,0] + speech_segment[:,1]

        # Add the current speech segment to the batch
        batch.append(speech_segment)

        # If the batch is full, process it
        if len(batch) == batch_size:
            # Concatenate all segments in the batch along the time axis
            input_values = processor(batch, sampling_rate=16_000, return_tensors="pt")
            input_values = input_values.to(device)
            with torch.no_grad():
                logits = model(**input_values).logits
            if len(logits.shape) == 1:
                logits = logits.unsqueeze(0)
            beam_search_result = beam_search_decoder(logits.to("cpu"))

            # Transcribe each segment in the batch
            for i in range(batch_size):
                transcription = " ".join(beam_search_result[i][0].words).strip()
                print(transcription)
                transcripts.append(transcription)

                encoding_end = encoding_start + block_size
                formatted_start = format_time(encoding_start)
                formatted_end = format_time(encoding_end)
                sbv_file.write(f"{formatted_start},{formatted_end}\n")
                sbv_file.write(f"{transcription}\n\n")

                encoding_start = encoding_end

            # Freeing up memory
            del input_values
            del logits
            del transcription
            torch.cuda.empty_cache()
            gc.collect()

            # Clear the batch
            batch = []

    if batch:
            # Concatenate all segments in the batch along the time axis
            input_values = processor(batch, sampling_rate=16_000, return_tensors="pt")
            input_values = input_values.to(device)
            with torch.no_grad():
                logits = model(**input_values).logits
            if len(logits.shape) == 1:
                logits = logits.unsqueeze(0)
            beam_search_result = beam_search_decoder(logits.to("cpu"))

            # Transcribe each segment in the batch
            for i in range(batch_size):
                transcription = " ".join(beam_search_result[i][0].words).strip()
                print(transcription)
                transcripts.append(transcription)

                encoding_end = encoding_start + block_size
                formatted_start = format_time(encoding_start)
                formatted_end = format_time(encoding_end)
                sbv_file.write(f"{formatted_start},{formatted_end}\n")
                sbv_file.write(f"{transcription}\n\n")

                encoding_start = encoding_end

            # Freeing up memory
            del input_values
            del logits
            del transcription
            torch.cuda.empty_cache()
            gc.collect()

    # Join all transcripts into a single transcript
    transcript = ' '.join(transcripts)
    sbv_file.close()

    end_time = time.time()
    print(f"The script ran for {end_time - start_time} seconds.")
    return("./subtitle.sbv")
    
demo = gr.Interface(fn=Transcribe, inputs=gr.File(label="Upload an audio file of Amharic content"), outputs=gr.File(label="Download .sbv transcription"),
                   title="Amharic Audio Transcription",
                    description="This application uses Meta MMS and a custom kenLM model to transcribe Amharic Audio files of arbitrary length into .sbv files. Upload an Amharic audio file and get your transcription! \n(Note: This is only a rough implementation of Meta's MMS for audio transcription, you should manually edit files after transcription has completed.)"
                   )
demo.launch()