Spaces:
Sleeping
Sleeping
import soundfile as sf | |
import datetime | |
from pyctcdecode import BeamSearchDecoderCTC | |
import torch | |
import os | |
import time | |
import gc | |
import gradio as gr | |
import librosa | |
from transformers import Wav2Vec2ForCTC, Wav2Vec2ProcessorWithLM, AutoModelForSeq2SeqLM, AutoTokenizer | |
from numba import cuda | |
# load pretrained model | |
model = Wav2Vec2ForCTC.from_pretrained("facebook/mms-1b-all") | |
processor = Wav2Vec2ProcessorWithLM.from_pretrained("jlonsako/mms-1b-all-AmhLM") | |
#Define Functions | |
#convert time into .sbv format | |
def format_time(seconds): | |
# Convert seconds to hh:mm:ss,ms format | |
return str(datetime.timedelta(seconds=seconds)).replace('.', ',') | |
#function to send text strings to be translated into english | |
def translate_text( | |
text: str = "αααα« α αα α΅αα α¨ααα£α α₯α© α₯ααα₯ααα α₯αα΄α΅", | |
project_id: str = "noble-feat-390914" | |
) -> translate.TranslationServiceClient: | |
"""Translating Text.""" | |
client = translate.TranslationServiceClient() | |
location = "global" | |
parent = f"projects/{project_id}/locations/{location}" | |
# Translate text from English to Amharic | |
# Detail on supported types can be found here: | |
# https://cloud.google.com/translate/docs/supported-formats | |
response = client.translate_text( | |
request={ | |
"parent": parent, | |
"contents": [text], | |
"mime_type": "text/plain", # mime types: text/plain, text/html | |
"source_language_code": "am", | |
"target_language_code": "en-US", | |
} | |
) | |
# Display the translation for each input text provided | |
#for translation in response.translations: | |
#print(f"Translated text: {translation.translated_text}") | |
return response | |
#Convert Video/Audio into 16K wav file | |
def preprocessAudio(audioFile): | |
os.system(f"ffmpeg -y -i {audioFile.name} -ar 16000 ./audio.wav") | |
#Transcribe!!! | |
def Transcribe(file): | |
device = "cuda:0" if torch.cuda.is_available() else "cpu" | |
start_time = time.time() | |
model.load_adapter("amh") | |
preprocessAudio(file) | |
#os.system(f"ffmpeg -y -i ./July3_2023_Sermon.mov -ar 16000 ./audio.wav") | |
block_size = 30 | |
transcripts = [] | |
stream = librosa.stream( | |
"./audio.wav", | |
block_length=block_size, | |
frame_length=16000, | |
hop_length=16000 | |
) | |
model.to(device) | |
print("Model loaded to gpu: Entering transcription phase") | |
#Code for timestamping | |
encoding_start = 0 | |
sbv_file = open("subtitle.sbv", "w") | |
for speech_segment in stream: | |
if len(speech_segment.shape) > 1: | |
speech_segment = speech_segment[:,0] + speech_segment[:,1] | |
input_values = processor(speech_segment, sampling_rate=16_000, return_tensors="pt").input_values.to(device) | |
with torch.no_grad(): | |
logits = model(input_values).logits | |
if len(logits.shape) == 1: | |
print("test") | |
logits = logits.unsqueeze(0) | |
#predicted_ids = torch.argmax(logits, dim=-1) | |
transcription = processor.batch_decode(logits.cpu().numpy()).text | |
transcripts.append(transcription[0]) | |
#Generate timestamps | |
encoding_end = encoding_start + block_size | |
formatted_start = format_time(encoding_start) | |
formatted_end = format_time(encoding_end) | |
#Write to the .sbv file | |
sbv_file.write(f"{formatted_start},{formatted_end}\n") | |
sbv_file.write(f"{transcription[0]}\n\n") | |
encoding_start = encoding_end | |
# Freeing up memory | |
del input_values | |
del logits | |
#del predicted_ids | |
del transcription | |
torch.cuda.empty_cache() | |
gc.collect() | |
# Join all transcripts into a single transcript | |
transcript = ' '.join(transcripts) | |
sbv_file.close() | |
end_time = time.time() | |
os.system("rm ./audio.wav") | |
print(f"The script ran for {end_time - start_time} seconds.") | |
return("subtitle.sbv") | |
demo = gr.Interface(fn=Transcribe, inputs=gr.File(), outputs=gr.File()) | |
#with gr.Blocks() as demo: | |
#file_output = gr.Textbox() | |
#upload_button = gr.UploadButton("Click to Upload a sermon", | |
# file_types=["video", "audio"], file_count="multiple") | |
#upload_button.upload(Transcribe, upload_button, file_output) | |
demo.launch() | |