tts-service / rvc /lib /utils.py
jlopez00's picture
Upload folder using huggingface_hub
bbf5262 verified
raw
history blame
4.66 kB
import logging
import os
import sys
import warnings
import librosa
import numpy as np
import soundfile as sf
import wget
from torch import nn
from transformers import HubertModel
# Remove this to see warnings about transformers models
warnings.filterwarnings("ignore")
logging.getLogger("fairseq").setLevel(logging.ERROR)
logging.getLogger("faiss.loader").setLevel(logging.ERROR)
logging.getLogger("transformers").setLevel(logging.ERROR)
logging.getLogger("torch").setLevel(logging.ERROR)
now_dir = os.getcwd()
sys.path.append(now_dir)
base_path = os.path.join(now_dir, "rvc", "models", "formant", "stftpitchshift")
stft = base_path + ".exe" if sys.platform == "win32" else base_path
class HubertModelWithFinalProj(HubertModel):
def __init__(self, config):
super().__init__(config)
self.final_proj = nn.Linear(config.hidden_size, config.classifier_proj_size)
def load_audio_infer(
file,
sample_rate,
**kwargs,
):
formant_shifting = kwargs.get("formant_shifting", False)
try:
file = file.strip(" ").strip('"').strip("\n").strip('"').strip(" ")
if not os.path.isfile(file):
raise FileNotFoundError(f"File not found: {file}")
audio, sr = sf.read(file)
if len(audio.shape) > 1:
audio = librosa.to_mono(audio.T)
if sr != sample_rate:
audio = librosa.resample(audio, orig_sr=sr, target_sr=sample_rate)
if formant_shifting:
formant_qfrency = kwargs.get("formant_qfrency", 0.8)
formant_timbre = kwargs.get("formant_timbre", 0.8)
from stftpitchshift import StftPitchShift
pitchshifter = StftPitchShift(1024, 32, sample_rate)
audio = pitchshifter.shiftpitch(
audio,
factors=1,
quefrency=formant_qfrency * 1e-3,
distortion=formant_timbre,
)
except Exception as error:
raise RuntimeError(f"An error occurred loading the audio: {error}")
return np.array(audio).flatten()
def load_embedding(embedder_model, custom_embedder=None):
embedder_root = os.path.join(now_dir, "rvc", "models", "embedders")
embedding_list = {
"contentvec": os.path.join(embedder_root, "contentvec"),
"chinese-hubert-base": os.path.join(embedder_root, "chinese_hubert_base"),
"japanese-hubert-base": os.path.join(embedder_root, "japanese_hubert_base"),
"korean-hubert-base": os.path.join(embedder_root, "korean_hubert_base"),
}
online_embedders = {
"contentvec": "https://huggingface.co/IAHispano/Applio/resolve/main/Resources/embedders/contentvec/pytorch_model.bin",
"chinese-hubert-base": "https://huggingface.co/IAHispano/Applio/resolve/main/Resources/embedders/chinese_hubert_base/pytorch_model.bin",
"japanese-hubert-base": "https://huggingface.co/IAHispano/Applio/resolve/main/Resources/embedders/japanese_hubert_base/pytorch_model.bin",
"korean-hubert-base": "https://huggingface.co/IAHispano/Applio/resolve/main/Resources/embedders/korean_hubert_base/pytorch_model.bin",
}
config_files = {
"contentvec": "https://huggingface.co/IAHispano/Applio/resolve/main/Resources/embedders/contentvec/config.json",
"chinese-hubert-base": "https://huggingface.co/IAHispano/Applio/resolve/main/Resources/embedders/chinese_hubert_base/config.json",
"japanese-hubert-base": "https://huggingface.co/IAHispano/Applio/resolve/main/Resources/embedders/japanese_hubert_base/config.json",
"korean-hubert-base": "https://huggingface.co/IAHispano/Applio/resolve/main/Resources/embedders/korean_hubert_base/config.json",
}
if embedder_model == "custom":
if os.path.exists(custom_embedder):
model_path = custom_embedder
else:
print(f"Custom embedder not found: {custom_embedder}, using contentvec")
model_path = embedding_list["contentvec"]
else:
model_path = embedding_list[embedder_model]
bin_file = os.path.join(model_path, "pytorch_model.bin")
json_file = os.path.join(model_path, "config.json")
os.makedirs(model_path, exist_ok=True)
if not os.path.exists(bin_file):
url = online_embedders[embedder_model]
print(f"Downloading {url} to {model_path}...")
wget.download(url, out=bin_file)
if not os.path.exists(json_file):
url = config_files[embedder_model]
print(f"Downloading {url} to {model_path}...")
wget.download(url, out=json_file)
models = HubertModelWithFinalProj.from_pretrained(model_path)
return models