Spaces:
Runtime error
Runtime error
import os | |
import glob | |
import torch | |
import numpy as np | |
from scipy.io.wavfile import read | |
from collections import OrderedDict | |
import matplotlib.pyplot as plt | |
MATPLOTLIB_FLAG = False | |
def replace_keys_in_dict(d, old_key_part, new_key_part): | |
""" | |
Recursively replace parts of the keys in a dictionary. | |
Args: | |
d (dict or OrderedDict): The dictionary to update. | |
old_key_part (str): The part of the key to replace. | |
new_key_part (str): The new part of the key. | |
""" | |
updated_dict = OrderedDict() if isinstance(d, OrderedDict) else {} | |
for key, value in d.items(): | |
new_key = ( | |
key.replace(old_key_part, new_key_part) if isinstance(key, str) else key | |
) | |
updated_dict[new_key] = ( | |
replace_keys_in_dict(value, old_key_part, new_key_part) | |
if isinstance(value, dict) | |
else value | |
) | |
return updated_dict | |
def load_checkpoint(checkpoint_path, model, optimizer=None, load_opt=1): | |
""" | |
Load a checkpoint into a model and optionally the optimizer. | |
Args: | |
checkpoint_path (str): Path to the checkpoint file. | |
model (torch.nn.Module): The model to load the checkpoint into. | |
optimizer (torch.optim.Optimizer, optional): The optimizer to load the state from. Defaults to None. | |
load_opt (int, optional): Whether to load the optimizer state. Defaults to 1. | |
""" | |
assert os.path.isfile( | |
checkpoint_path | |
), f"Checkpoint file not found: {checkpoint_path}" | |
checkpoint_dict = torch.load(checkpoint_path, map_location="cpu") | |
checkpoint_dict = replace_keys_in_dict( | |
replace_keys_in_dict( | |
checkpoint_dict, ".weight_v", ".parametrizations.weight.original1" | |
), | |
".weight_g", | |
".parametrizations.weight.original0", | |
) | |
# Update model state_dict | |
model_state_dict = ( | |
model.module.state_dict() if hasattr(model, "module") else model.state_dict() | |
) | |
new_state_dict = { | |
k: checkpoint_dict["model"].get(k, v) for k, v in model_state_dict.items() | |
} | |
# Load state_dict into model | |
if hasattr(model, "module"): | |
model.module.load_state_dict(new_state_dict, strict=False) | |
else: | |
model.load_state_dict(new_state_dict, strict=False) | |
if optimizer and load_opt == 1: | |
optimizer.load_state_dict(checkpoint_dict.get("optimizer", {})) | |
print( | |
f"Loaded checkpoint '{checkpoint_path}' (epoch {checkpoint_dict['iteration']})" | |
) | |
return ( | |
model, | |
optimizer, | |
checkpoint_dict.get("learning_rate", 0), | |
checkpoint_dict["iteration"], | |
) | |
def save_checkpoint(model, optimizer, learning_rate, iteration, checkpoint_path): | |
""" | |
Save the model and optimizer state to a checkpoint file. | |
Args: | |
model (torch.nn.Module): The model to save. | |
optimizer (torch.optim.Optimizer): The optimizer to save the state of. | |
learning_rate (float): The current learning rate. | |
iteration (int): The current iteration. | |
checkpoint_path (str): The path to save the checkpoint to. | |
""" | |
state_dict = ( | |
model.module.state_dict() if hasattr(model, "module") else model.state_dict() | |
) | |
checkpoint_data = { | |
"model": state_dict, | |
"iteration": iteration, | |
"optimizer": optimizer.state_dict(), | |
"learning_rate": learning_rate, | |
} | |
torch.save(checkpoint_data, checkpoint_path) | |
# Create a backwards-compatible checkpoint | |
old_version_path = checkpoint_path.replace(".pth", "_old_version.pth") | |
checkpoint_data = replace_keys_in_dict( | |
replace_keys_in_dict( | |
checkpoint_data, ".parametrizations.weight.original1", ".weight_v" | |
), | |
".parametrizations.weight.original0", | |
".weight_g", | |
) | |
torch.save(checkpoint_data, old_version_path) | |
os.replace(old_version_path, checkpoint_path) | |
print(f"Saved model '{checkpoint_path}' (epoch {iteration})") | |
def summarize( | |
writer, | |
global_step, | |
scalars={}, | |
histograms={}, | |
images={}, | |
audios={}, | |
audio_sample_rate=22050, | |
): | |
""" | |
Log various summaries to a TensorBoard writer. | |
Args: | |
writer (SummaryWriter): The TensorBoard writer. | |
global_step (int): The current global step. | |
scalars (dict, optional): Dictionary of scalar values to log. | |
histograms (dict, optional): Dictionary of histogram values to log. | |
images (dict, optional): Dictionary of image values to log. | |
audios (dict, optional): Dictionary of audio values to log. | |
audio_sample_rate (int, optional): Sampling rate of the audio data. | |
""" | |
for k, v in scalars.items(): | |
writer.add_scalar(k, v, global_step) | |
for k, v in histograms.items(): | |
writer.add_histogram(k, v, global_step) | |
for k, v in images.items(): | |
writer.add_image(k, v, global_step, dataformats="HWC") | |
for k, v in audios.items(): | |
writer.add_audio(k, v, global_step, audio_sample_rate) | |
def latest_checkpoint_path(dir_path, regex="G_*.pth"): | |
""" | |
Get the latest checkpoint file in a directory. | |
Args: | |
dir_path (str): The directory to search for checkpoints. | |
regex (str, optional): The regular expression to match checkpoint files. | |
""" | |
checkpoints = sorted( | |
glob.glob(os.path.join(dir_path, regex)), | |
key=lambda f: int("".join(filter(str.isdigit, f))), | |
) | |
return checkpoints[-1] if checkpoints else None | |
def plot_spectrogram_to_numpy(spectrogram): | |
""" | |
Convert a spectrogram to a NumPy array for visualization. | |
Args: | |
spectrogram (numpy.ndarray): The spectrogram to plot. | |
""" | |
global MATPLOTLIB_FLAG | |
if not MATPLOTLIB_FLAG: | |
plt.switch_backend("Agg") | |
MATPLOTLIB_FLAG = True | |
fig, ax = plt.subplots(figsize=(10, 2)) | |
im = ax.imshow(spectrogram, aspect="auto", origin="lower", interpolation="none") | |
plt.colorbar(im, ax=ax) | |
plt.xlabel("Frames") | |
plt.ylabel("Channels") | |
plt.tight_layout() | |
fig.canvas.draw() | |
data = np.frombuffer(fig.canvas.tostring_rgb(), dtype=np.uint8) | |
data = data.reshape(fig.canvas.get_width_height()[::-1] + (3,)) | |
plt.close(fig) | |
return data | |
def load_wav_to_torch(full_path): | |
""" | |
Load a WAV file into a PyTorch tensor. | |
Args: | |
full_path (str): The path to the WAV file. | |
""" | |
sample_rate, data = read(full_path) | |
return torch.FloatTensor(data.astype(np.float32)), sample_rate | |
def load_filepaths_and_text(filename, split="|"): | |
""" | |
Load filepaths and associated text from a file. | |
Args: | |
filename (str): The path to the file. | |
split (str, optional): The delimiter used to split the lines. | |
""" | |
with open(filename, encoding="utf-8") as f: | |
return [line.strip().split(split) for line in f] | |
class HParams: | |
""" | |
A class for storing and accessing hyperparameters. | |
""" | |
def __init__(self, **kwargs): | |
for k, v in kwargs.items(): | |
self[k] = HParams(**v) if isinstance(v, dict) else v | |
def keys(self): | |
return self.__dict__.keys() | |
def items(self): | |
return self.__dict__.items() | |
def values(self): | |
return self.__dict__.values() | |
def __len__(self): | |
return len(self.__dict__) | |
def __getitem__(self, key): | |
return self.__dict__[key] | |
def __setitem__(self, key, value): | |
self.__dict__[key] = value | |
def __contains__(self, key): | |
return key in self.__dict__ | |
def __repr__(self): | |
return repr(self.__dict__) | |