Spaces:
Runtime error
Runtime error
import os | |
import re | |
import sys | |
import glob | |
import json | |
import torch | |
import datetime | |
from distutils.util import strtobool | |
from random import randint, shuffle | |
from time import time as ttime | |
from time import sleep | |
from tqdm import tqdm | |
from torch.nn.parallel import DistributedDataParallel as DDP | |
from torch.utils.tensorboard import SummaryWriter | |
from torch.cuda.amp import GradScaler, autocast | |
from torch.utils.data import DataLoader | |
from torch.nn import functional as F | |
import torch.distributed as dist | |
import torch.multiprocessing as mp | |
now_dir = os.getcwd() | |
sys.path.append(os.path.join(now_dir)) | |
# Zluda hijack | |
import rvc.lib.zluda | |
from utils import ( | |
HParams, | |
plot_spectrogram_to_numpy, | |
summarize, | |
load_checkpoint, | |
save_checkpoint, | |
latest_checkpoint_path, | |
load_wav_to_torch, | |
) | |
from losses import ( | |
discriminator_loss, | |
feature_loss, | |
generator_loss, | |
kl_loss, | |
) | |
from mel_processing import mel_spectrogram_torch, spec_to_mel_torch | |
from rvc.train.process.extract_model import extract_model | |
from rvc.lib.algorithm import commons | |
# Parse command line arguments | |
model_name = sys.argv[1] | |
save_every_epoch = int(sys.argv[2]) | |
total_epoch = int(sys.argv[3]) | |
pretrainG = sys.argv[4] | |
pretrainD = sys.argv[5] | |
version = sys.argv[6] | |
gpus = sys.argv[7] | |
batch_size = int(sys.argv[8]) | |
sample_rate = int(sys.argv[9]) | |
pitch_guidance = strtobool(sys.argv[10]) | |
save_only_latest = strtobool(sys.argv[11]) | |
save_every_weights = strtobool(sys.argv[12]) | |
cache_data_in_gpu = strtobool(sys.argv[13]) | |
overtraining_detector = strtobool(sys.argv[14]) | |
overtraining_threshold = int(sys.argv[15]) | |
cleanup = strtobool(sys.argv[16]) | |
current_dir = os.getcwd() | |
experiment_dir = os.path.join(current_dir, "logs", model_name) | |
config_save_path = os.path.join(experiment_dir, "config.json") | |
dataset_path = os.path.join(experiment_dir, "sliced_audios") | |
with open(config_save_path, "r") as f: | |
config = json.load(f) | |
config = HParams(**config) | |
config.data.training_files = os.path.join(experiment_dir, "filelist.txt") | |
torch.backends.cudnn.deterministic = False | |
torch.backends.cudnn.benchmark = False | |
global_step = 0 | |
last_loss_gen_all = 0 | |
overtrain_save_epoch = 0 | |
loss_gen_history = [] | |
smoothed_loss_gen_history = [] | |
loss_disc_history = [] | |
smoothed_loss_disc_history = [] | |
lowest_value = {"step": 0, "value": float("inf"), "epoch": 0} | |
training_file_path = os.path.join(experiment_dir, "training_data.json") | |
import logging | |
logging.getLogger("torch").setLevel(logging.ERROR) | |
class EpochRecorder: | |
""" | |
Records the time elapsed per epoch. | |
""" | |
def __init__(self): | |
self.last_time = ttime() | |
def record(self): | |
""" | |
Records the elapsed time and returns a formatted string. | |
""" | |
now_time = ttime() | |
elapsed_time = now_time - self.last_time | |
self.last_time = now_time | |
elapsed_time = round(elapsed_time, 1) | |
elapsed_time_str = str(datetime.timedelta(seconds=int(elapsed_time))) | |
current_time = datetime.datetime.now().strftime("%H:%M:%S") | |
return f"time={current_time} | training_speed={elapsed_time_str}" | |
def verify_checkpoint_shapes(checkpoint_path, model): | |
checkpoint = torch.load(checkpoint_path, map_location="cpu") | |
checkpoint_state_dict = checkpoint["model"] | |
try: | |
if hasattr(model, "module"): | |
model_state_dict = model.module.load_state_dict(checkpoint_state_dict) | |
else: | |
model_state_dict = model.load_state_dict(checkpoint_state_dict) | |
except RuntimeError: | |
print( | |
"The parameters of the pretrain model such as the sample rate or architecture do not match the selected model." | |
) | |
sys.exit(1) | |
else: | |
del checkpoint | |
del checkpoint_state_dict | |
del model_state_dict | |
def main(): | |
""" | |
Main function to start the training process. | |
""" | |
global training_file_path, last_loss_gen_all, smoothed_loss_gen_history, loss_gen_history, loss_disc_history, smoothed_loss_disc_history, overtrain_save_epoch | |
os.environ["MASTER_ADDR"] = "localhost" | |
os.environ["MASTER_PORT"] = str(randint(20000, 55555)) | |
# Check sample rate | |
wavs = glob.glob( | |
os.path.join(os.path.join(experiment_dir, "sliced_audios"), "*.wav") | |
) | |
if wavs: | |
_, sr = load_wav_to_torch(wavs[0]) | |
if sr != sample_rate: | |
print( | |
f"Error: Pretrained model sample rate ({sample_rate} Hz) does not match dataset audio sample rate ({sr} Hz)." | |
) | |
os._exit(1) | |
else: | |
print("No wav file found.") | |
if torch.cuda.is_available(): | |
device = torch.device("cuda") | |
n_gpus = torch.cuda.device_count() | |
elif torch.backends.mps.is_available(): | |
device = torch.device("mps") | |
n_gpus = 1 | |
else: | |
device = torch.device("cpu") | |
n_gpus = 1 | |
print("Training with CPU, this will take a long time.") | |
def start(): | |
""" | |
Starts the training process with multi-GPU support or CPU. | |
""" | |
children = [] | |
pid_data = {"process_pids": []} | |
with open(config_save_path, "r") as pid_file: | |
try: | |
existing_data = json.load(pid_file) | |
pid_data.update(existing_data) | |
except json.JSONDecodeError: | |
pass | |
with open(config_save_path, "w") as pid_file: | |
for i in range(n_gpus): | |
subproc = mp.Process( | |
target=run, | |
args=( | |
i, | |
n_gpus, | |
experiment_dir, | |
pretrainG, | |
pretrainD, | |
pitch_guidance, | |
total_epoch, | |
save_every_weights, | |
config, | |
device, | |
), | |
) | |
children.append(subproc) | |
subproc.start() | |
pid_data["process_pids"].append(subproc.pid) | |
json.dump(pid_data, pid_file, indent=4) | |
for i in range(n_gpus): | |
children[i].join() | |
def load_from_json(file_path): | |
""" | |
Load data from a JSON file. | |
Args: | |
file_path (str): The path to the JSON file. | |
""" | |
if os.path.exists(file_path): | |
with open(file_path, "r") as f: | |
data = json.load(f) | |
return ( | |
data.get("loss_disc_history", []), | |
data.get("smoothed_loss_disc_history", []), | |
data.get("loss_gen_history", []), | |
data.get("smoothed_loss_gen_history", []), | |
) | |
return [], [], [], [] | |
def continue_overtrain_detector(training_file_path): | |
""" | |
Continues the overtrain detector by loading the training history from a JSON file. | |
Args: | |
training_file_path (str): The file path of the JSON file containing the training history. | |
""" | |
if overtraining_detector: | |
if os.path.exists(training_file_path): | |
( | |
loss_disc_history, | |
smoothed_loss_disc_history, | |
loss_gen_history, | |
smoothed_loss_gen_history, | |
) = load_from_json(training_file_path) | |
if cleanup: | |
print("Removing files from the prior training attempt...") | |
# Clean up unnecessary files | |
for root, dirs, files in os.walk( | |
os.path.join(now_dir, "logs", model_name), topdown=False | |
): | |
for name in files: | |
file_path = os.path.join(root, name) | |
file_name, file_extension = os.path.splitext(name) | |
if ( | |
file_extension == ".0" | |
or (file_name.startswith("D_") and file_extension == ".pth") | |
or (file_name.startswith("G_") and file_extension == ".pth") | |
or (file_name.startswith("added") and file_extension == ".index") | |
): | |
os.remove(file_path) | |
for name in dirs: | |
if name == "eval": | |
folder_path = os.path.join(root, name) | |
for item in os.listdir(folder_path): | |
item_path = os.path.join(folder_path, item) | |
if os.path.isfile(item_path): | |
os.remove(item_path) | |
os.rmdir(folder_path) | |
print("Cleanup done!") | |
continue_overtrain_detector(training_file_path) | |
start() | |
def run( | |
rank, | |
n_gpus, | |
experiment_dir, | |
pretrainG, | |
pretrainD, | |
pitch_guidance, | |
custom_total_epoch, | |
custom_save_every_weights, | |
config, | |
device, | |
): | |
""" | |
Runs the training loop on a specific GPU or CPU. | |
Args: | |
rank (int): The rank of the current process within the distributed training setup. | |
n_gpus (int): The total number of GPUs available for training. | |
experiment_dir (str): The directory where experiment logs and checkpoints will be saved. | |
pretrainG (str): Path to the pre-trained generator model. | |
pretrainD (str): Path to the pre-trained discriminator model. | |
pitch_guidance (bool): Flag indicating whether to use pitch guidance during training. | |
custom_total_epoch (int): The total number of epochs for training. | |
custom_save_every_weights (int): The interval (in epochs) at which to save model weights. | |
config (object): Configuration object containing training parameters. | |
device (torch.device): The device to use for training (CPU or GPU). | |
""" | |
global global_step, smoothed_value_gen, smoothed_value_disc | |
smoothed_value_gen = 0 | |
smoothed_value_disc = 0 | |
if rank == 0: | |
writer = SummaryWriter(log_dir=experiment_dir) | |
writer_eval = SummaryWriter(log_dir=os.path.join(experiment_dir, "eval")) | |
else: | |
writer, writer_eval = None, None | |
dist.init_process_group( | |
backend="gloo", | |
init_method="env://", | |
world_size=n_gpus if device.type == "cuda" else 1, | |
rank=rank if device.type == "cuda" else 0, | |
) | |
torch.manual_seed(config.train.seed) | |
if torch.cuda.is_available(): | |
torch.cuda.set_device(rank) | |
# Create datasets and dataloaders | |
from data_utils import ( | |
DistributedBucketSampler, | |
TextAudioCollateMultiNSFsid, | |
TextAudioLoaderMultiNSFsid, | |
) | |
train_dataset = TextAudioLoaderMultiNSFsid(config.data) | |
collate_fn = TextAudioCollateMultiNSFsid() | |
train_sampler = DistributedBucketSampler( | |
train_dataset, | |
batch_size * n_gpus, | |
[100, 200, 300, 400, 500, 600, 700, 800, 900], | |
num_replicas=n_gpus, | |
rank=rank, | |
shuffle=True, | |
) | |
train_loader = DataLoader( | |
train_dataset, | |
num_workers=4, | |
shuffle=False, | |
pin_memory=True, | |
collate_fn=collate_fn, | |
batch_sampler=train_sampler, | |
persistent_workers=True, | |
prefetch_factor=8, | |
) | |
# Initialize models and optimizers | |
from rvc.lib.algorithm.discriminators import MultiPeriodDiscriminator | |
from rvc.lib.algorithm.discriminators import MultiPeriodDiscriminatorV2 | |
from rvc.lib.algorithm.synthesizers import Synthesizer | |
net_g = Synthesizer( | |
config.data.filter_length // 2 + 1, | |
config.train.segment_size // config.data.hop_length, | |
**config.model, | |
use_f0=pitch_guidance == True, # converting 1/0 to True/False | |
is_half=config.train.fp16_run and device.type == "cuda", | |
sr=sample_rate, | |
).to(device) | |
if version == "v1": | |
net_d = MultiPeriodDiscriminator(config.model.use_spectral_norm).to(device) | |
else: | |
net_d = MultiPeriodDiscriminatorV2(config.model.use_spectral_norm).to(device) | |
optim_g = torch.optim.AdamW( | |
net_g.parameters(), | |
config.train.learning_rate, | |
betas=config.train.betas, | |
eps=config.train.eps, | |
) | |
optim_d = torch.optim.AdamW( | |
net_d.parameters(), | |
config.train.learning_rate, | |
betas=config.train.betas, | |
eps=config.train.eps, | |
) | |
# Wrap models with DDP for multi-gpu processing | |
if n_gpus > 1 and device.type == "cuda": | |
net_g = DDP(net_g, device_ids=[rank]) | |
net_d = DDP(net_d, device_ids=[rank]) | |
# Load checkpoint if available | |
try: | |
print("Starting training...") | |
_, _, _, epoch_str = load_checkpoint( | |
latest_checkpoint_path(experiment_dir, "D_*.pth"), net_d, optim_d | |
) | |
_, _, _, epoch_str = load_checkpoint( | |
latest_checkpoint_path(experiment_dir, "G_*.pth"), net_g, optim_g | |
) | |
epoch_str += 1 | |
global_step = (epoch_str - 1) * len(train_loader) | |
except: | |
epoch_str = 1 | |
global_step = 0 | |
if pretrainG != "": | |
if rank == 0: | |
verify_checkpoint_shapes(pretrainG, net_g) | |
print(f"Loaded pretrained (G) '{pretrainG}'") | |
if hasattr(net_g, "module"): | |
net_g.module.load_state_dict( | |
torch.load(pretrainG, map_location="cpu")["model"] | |
) | |
else: | |
net_g.load_state_dict( | |
torch.load(pretrainG, map_location="cpu")["model"] | |
) | |
if pretrainD != "": | |
if rank == 0: | |
print(f"Loaded pretrained (D) '{pretrainD}'") | |
if hasattr(net_d, "module"): | |
net_d.module.load_state_dict( | |
torch.load(pretrainD, map_location="cpu")["model"] | |
) | |
else: | |
net_d.load_state_dict( | |
torch.load(pretrainD, map_location="cpu")["model"] | |
) | |
# Initialize schedulers and scaler | |
scheduler_g = torch.optim.lr_scheduler.ExponentialLR( | |
optim_g, gamma=config.train.lr_decay, last_epoch=epoch_str - 2 | |
) | |
scheduler_d = torch.optim.lr_scheduler.ExponentialLR( | |
optim_d, gamma=config.train.lr_decay, last_epoch=epoch_str - 2 | |
) | |
scaler = GradScaler(enabled=config.train.fp16_run and device.type == "cuda") | |
cache = [] | |
# get the first sample as reference for tensorboard evaluation | |
# custom reference temporarily disabled | |
if True == False and os.path.isfile( | |
os.path.join("logs", "reference", f"ref{sample_rate}.wav") | |
): | |
import numpy as np | |
phone = np.load( | |
os.path.join("logs", "reference", f"ref{sample_rate}_feats.npy") | |
) | |
# expanding x2 to match pitch size | |
phone = np.repeat(phone, 2, axis=0) | |
phone = torch.FloatTensor(phone).unsqueeze(0).to(device) | |
phone_lengths = torch.LongTensor(phone.size(0)).to(device) | |
pitch = np.load(os.path.join("logs", "reference", f"ref{sample_rate}_f0c.npy")) | |
# removed last frame to match features | |
pitch = torch.LongTensor(pitch[:-1]).unsqueeze(0).to(device) | |
pitchf = np.load(os.path.join("logs", "reference", f"ref{sample_rate}_f0f.npy")) | |
# removed last frame to match features | |
pitchf = torch.FloatTensor(pitchf[:-1]).unsqueeze(0).to(device) | |
sid = torch.LongTensor([0]).to(device) | |
reference = ( | |
phone, | |
phone_lengths, | |
pitch if pitch_guidance else None, | |
pitchf if pitch_guidance else None, | |
sid, | |
) | |
else: | |
for info in train_loader: | |
phone, phone_lengths, pitch, pitchf, _, _, _, _, sid = info | |
reference = ( | |
phone.to(device), | |
phone_lengths.to(device), | |
pitch.to(device) if pitch_guidance else None, | |
pitchf.to(device) if pitch_guidance else None, | |
sid.to(device), | |
) | |
break | |
for epoch in range(epoch_str, total_epoch + 1): | |
train_and_evaluate( | |
rank, | |
epoch, | |
config, | |
[net_g, net_d], | |
[optim_g, optim_d], | |
scaler, | |
[train_loader, None], | |
[writer, writer_eval], | |
cache, | |
custom_save_every_weights, | |
custom_total_epoch, | |
device, | |
reference, | |
) | |
scheduler_g.step() | |
scheduler_d.step() | |
def train_and_evaluate( | |
rank, | |
epoch, | |
hps, | |
nets, | |
optims, | |
scaler, | |
loaders, | |
writers, | |
cache, | |
custom_save_every_weights, | |
custom_total_epoch, | |
device, | |
reference, | |
): | |
""" | |
Trains and evaluates the model for one epoch. | |
Args: | |
rank (int): Rank of the current process. | |
epoch (int): Current epoch number. | |
hps (Namespace): Hyperparameters. | |
nets (list): List of models [net_g, net_d]. | |
optims (list): List of optimizers [optim_g, optim_d]. | |
scaler (GradScaler): Gradient scaler for mixed precision training. | |
loaders (list): List of dataloaders [train_loader, eval_loader]. | |
writers (list): List of TensorBoard writers [writer, writer_eval]. | |
cache (list): List to cache data in GPU memory. | |
use_cpu (bool): Whether to use CPU for training. | |
""" | |
global global_step, lowest_value, loss_disc, consecutive_increases_gen, consecutive_increases_disc, smoothed_value_gen, smoothed_value_disc | |
if epoch == 1: | |
lowest_value = {"step": 0, "value": float("inf"), "epoch": 0} | |
last_loss_gen_all = 0.0 | |
consecutive_increases_gen = 0 | |
consecutive_increases_disc = 0 | |
net_g, net_d = nets | |
optim_g, optim_d = optims | |
train_loader = loaders[0] if loaders is not None else None | |
if writers is not None: | |
writer = writers[0] | |
train_loader.batch_sampler.set_epoch(epoch) | |
net_g.train() | |
net_d.train() | |
# Data caching | |
if device.type == "cuda" and cache_data_in_gpu: | |
data_iterator = cache | |
if cache == []: | |
for batch_idx, info in enumerate(train_loader): | |
# phone, phone_lengths, pitch, pitchf, spec, spec_lengths, wave, wave_lengths, sid | |
info = [tensor.cuda(rank, non_blocking=True) for tensor in info] | |
cache.append((batch_idx, info)) | |
else: | |
shuffle(cache) | |
else: | |
data_iterator = enumerate(train_loader) | |
epoch_recorder = EpochRecorder() | |
with tqdm(total=len(train_loader), leave=False) as pbar: | |
for batch_idx, info in data_iterator: | |
if device.type == "cuda" and not cache_data_in_gpu: | |
info = [tensor.cuda(rank, non_blocking=True) for tensor in info] | |
elif device.type != "cuda": | |
info = [tensor.to(device) for tensor in info] | |
# else iterator is going thru a cached list with a device already assigned | |
( | |
phone, | |
phone_lengths, | |
pitch, | |
pitchf, | |
spec, | |
spec_lengths, | |
wave, | |
wave_lengths, | |
sid, | |
) = info | |
pitch = pitch if pitch_guidance else None | |
pitchf = pitchf if pitch_guidance else None | |
# Forward pass | |
use_amp = config.train.fp16_run and device.type == "cuda" | |
with autocast(enabled=use_amp): | |
model_output = net_g( | |
phone, phone_lengths, pitch, pitchf, spec, spec_lengths, sid | |
) | |
y_hat, ids_slice, x_mask, z_mask, (z, z_p, m_p, logs_p, m_q, logs_q) = ( | |
model_output | |
) | |
# used for tensorboard chart - all/mel | |
mel = spec_to_mel_torch( | |
spec, | |
config.data.filter_length, | |
config.data.n_mel_channels, | |
config.data.sample_rate, | |
config.data.mel_fmin, | |
config.data.mel_fmax, | |
) | |
# used for tensorboard chart - slice/mel_org | |
y_mel = commons.slice_segments( | |
mel, | |
ids_slice, | |
config.train.segment_size // config.data.hop_length, | |
dim=3, | |
) | |
# used for tensorboard chart - slice/mel_gen | |
with autocast(enabled=False): | |
y_hat_mel = mel_spectrogram_torch( | |
y_hat.float().squeeze(1), | |
config.data.filter_length, | |
config.data.n_mel_channels, | |
config.data.sample_rate, | |
config.data.hop_length, | |
config.data.win_length, | |
config.data.mel_fmin, | |
config.data.mel_fmax, | |
) | |
if use_amp: | |
y_hat_mel = y_hat_mel.half() | |
# slice of the original waveform to match a generate slice | |
wave = commons.slice_segments( | |
wave, | |
ids_slice * config.data.hop_length, | |
config.train.segment_size, | |
dim=3, | |
) | |
y_d_hat_r, y_d_hat_g, _, _ = net_d(wave, y_hat.detach()) | |
with autocast(enabled=False): | |
loss_disc, losses_disc_r, losses_disc_g = discriminator_loss( | |
y_d_hat_r, y_d_hat_g | |
) | |
# Discriminator backward and update | |
optim_d.zero_grad() | |
scaler.scale(loss_disc).backward() | |
scaler.unscale_(optim_d) | |
grad_norm_d = commons.clip_grad_value(net_d.parameters(), None) | |
scaler.step(optim_d) | |
# Generator backward and update | |
with autocast(enabled=use_amp): | |
y_d_hat_r, y_d_hat_g, fmap_r, fmap_g = net_d(wave, y_hat) | |
with autocast(enabled=False): | |
loss_mel = F.l1_loss(y_mel, y_hat_mel) * config.train.c_mel | |
loss_kl = ( | |
kl_loss(z_p, logs_q, m_p, logs_p, z_mask) * config.train.c_kl | |
) | |
loss_fm = feature_loss(fmap_r, fmap_g) | |
loss_gen, losses_gen = generator_loss(y_d_hat_g) | |
loss_gen_all = loss_gen + loss_fm + loss_mel + loss_kl | |
if loss_gen_all < lowest_value["value"]: | |
lowest_value["value"] = loss_gen_all | |
lowest_value["step"] = global_step | |
lowest_value["epoch"] = epoch | |
# print(f'Lowest generator loss updated: {lowest_value["value"]} at epoch {epoch}, step {global_step}') | |
if epoch > lowest_value["epoch"]: | |
print( | |
"Alert: The lower generating loss has been exceeded by a lower loss in a subsequent epoch." | |
) | |
optim_g.zero_grad() | |
scaler.scale(loss_gen_all).backward() | |
scaler.unscale_(optim_g) | |
grad_norm_g = commons.clip_grad_value(net_g.parameters(), None) | |
scaler.step(optim_g) | |
scaler.update() | |
global_step += 1 | |
pbar.update(1) | |
# Logging and checkpointing | |
if rank == 0: | |
lr = optim_g.param_groups[0]["lr"] | |
if loss_mel > 75: | |
loss_mel = 75 | |
if loss_kl > 9: | |
loss_kl = 9 | |
scalar_dict = { | |
"loss/g/total": loss_gen_all, | |
"loss/d/total": loss_disc, | |
"learning_rate": lr, | |
"grad/norm_d": grad_norm_d, | |
"grad/norm_g": grad_norm_g, | |
"loss/g/fm": loss_fm, | |
"loss/g/mel": loss_mel, | |
"loss/g/kl": loss_kl, | |
} | |
# commented out | |
# scalar_dict.update({f"loss/g/{i}": v for i, v in enumerate(losses_gen)}) | |
# scalar_dict.update({f"loss/d_r/{i}": v for i, v in enumerate(losses_disc_r)}) | |
# scalar_dict.update({f"loss/d_g/{i}": v for i, v in enumerate(losses_disc_g)}) | |
image_dict = { | |
"slice/mel_org": plot_spectrogram_to_numpy(y_mel[0].data.cpu().numpy()), | |
"slice/mel_gen": plot_spectrogram_to_numpy(y_hat_mel[0].data.cpu().numpy()), | |
"all/mel": plot_spectrogram_to_numpy(mel[0].data.cpu().numpy()), | |
} | |
with torch.no_grad(): | |
if hasattr(net_g, "module"): | |
o, *_ = net_g.module.infer(*reference) | |
else: | |
o, *_ = net_g.infer(*reference) | |
audio_dict = {f"gen/audio_{global_step:07d}": o[0, :, :]} | |
summarize( | |
writer=writer, | |
global_step=global_step, | |
images=image_dict, | |
scalars=scalar_dict, | |
audios=audio_dict, | |
audio_sample_rate=config.data.sample_rate, | |
) | |
# Save checkpoint | |
model_add = [] | |
model_del = [] | |
done = False | |
if rank == 0: | |
# Save weights every N epochs | |
if epoch % save_every_epoch == 0: | |
checkpoint_suffix = f"{2333333 if save_only_latest else global_step}.pth" | |
save_checkpoint( | |
net_g, | |
optim_g, | |
config.train.learning_rate, | |
epoch, | |
os.path.join(experiment_dir, "G_" + checkpoint_suffix), | |
) | |
save_checkpoint( | |
net_d, | |
optim_d, | |
config.train.learning_rate, | |
epoch, | |
os.path.join(experiment_dir, "D_" + checkpoint_suffix), | |
) | |
if custom_save_every_weights: | |
model_add.append( | |
os.path.join( | |
experiment_dir, f"{model_name}_{epoch}e_{global_step}s.pth" | |
) | |
) | |
overtrain_info = "" | |
# Check overtraining | |
if overtraining_detector and rank == 0 and epoch > 1: | |
# Add the current loss to the history | |
current_loss_disc = float(loss_disc) | |
loss_disc_history.append(current_loss_disc) | |
# Update smoothed loss history with loss_disc | |
smoothed_value_disc = update_exponential_moving_average( | |
smoothed_loss_disc_history, current_loss_disc | |
) | |
# Check overtraining with smoothed loss_disc | |
is_overtraining_disc = check_overtraining( | |
smoothed_loss_disc_history, overtraining_threshold * 2 | |
) | |
if is_overtraining_disc: | |
consecutive_increases_disc += 1 | |
else: | |
consecutive_increases_disc = 0 | |
# Add the current loss_gen to the history | |
current_loss_gen = float(lowest_value["value"]) | |
loss_gen_history.append(current_loss_gen) | |
# Update the smoothed loss_gen history | |
smoothed_value_gen = update_exponential_moving_average( | |
smoothed_loss_gen_history, current_loss_gen | |
) | |
# Check for overtraining with the smoothed loss_gen | |
is_overtraining_gen = check_overtraining( | |
smoothed_loss_gen_history, overtraining_threshold, 0.01 | |
) | |
if is_overtraining_gen: | |
consecutive_increases_gen += 1 | |
else: | |
consecutive_increases_gen = 0 | |
overtrain_info = f"Smoothed loss_g {smoothed_value_gen:.3f} and loss_d {smoothed_value_disc:.3f}" | |
# Save the data in the JSON file if the epoch is divisible by save_every_epoch | |
if epoch % save_every_epoch == 0: | |
save_to_json( | |
training_file_path, | |
loss_disc_history, | |
smoothed_loss_disc_history, | |
loss_gen_history, | |
smoothed_loss_gen_history, | |
) | |
if ( | |
is_overtraining_gen | |
and consecutive_increases_gen == overtraining_threshold | |
or is_overtraining_disc | |
and consecutive_increases_disc == overtraining_threshold * 2 | |
): | |
print( | |
f"Overtraining detected at epoch {epoch} with smoothed loss_g {smoothed_value_gen:.3f} and loss_d {smoothed_value_disc:.3f}" | |
) | |
done = True | |
else: | |
print( | |
f"New best epoch {epoch} with smoothed loss_g {smoothed_value_gen:.3f} and loss_d {smoothed_value_disc:.3f}" | |
) | |
old_model_files = glob.glob( | |
os.path.join(experiment_dir, f"{model_name}_*e_*s_best_epoch.pth") | |
) | |
for file in old_model_files: | |
model_del.append(file) | |
model_add.append( | |
os.path.join( | |
experiment_dir, | |
f"{model_name}_{epoch}e_{global_step}s_best_epoch.pth", | |
) | |
) | |
# Check completion | |
if epoch >= custom_total_epoch: | |
lowest_value_rounded = float(lowest_value["value"]) | |
lowest_value_rounded = round(lowest_value_rounded, 3) | |
print( | |
f"Training has been successfully completed with {epoch} epoch, {global_step} steps and {round(loss_gen_all.item(), 3)} loss gen." | |
) | |
print( | |
f"Lowest generator loss: {lowest_value_rounded} at epoch {lowest_value['epoch']}, step {lowest_value['step']}" | |
) | |
pid_file_path = os.path.join(experiment_dir, "config.json") | |
with open(pid_file_path, "r") as pid_file: | |
pid_data = json.load(pid_file) | |
with open(pid_file_path, "w") as pid_file: | |
pid_data.pop("process_pids", None) | |
json.dump(pid_data, pid_file, indent=4) | |
# Final model | |
model_add.append( | |
os.path.join( | |
experiment_dir, f"{model_name}_{epoch}e_{global_step}s.pth" | |
) | |
) | |
done = True | |
if model_add: | |
ckpt = ( | |
net_g.module.state_dict() | |
if hasattr(net_g, "module") | |
else net_g.state_dict() | |
) | |
for m in model_add: | |
if not os.path.exists(m): | |
extract_model( | |
ckpt=ckpt, | |
sr=sample_rate, | |
pitch_guidance=pitch_guidance | |
== True, # converting 1/0 to True/False, | |
name=model_name, | |
model_dir=m, | |
epoch=epoch, | |
step=global_step, | |
version=version, | |
hps=hps, | |
overtrain_info=overtrain_info, | |
) | |
# Clean-up old best epochs | |
for m in model_del: | |
os.remove(m) | |
# Print training progress | |
lowest_value_rounded = float(lowest_value["value"]) | |
lowest_value_rounded = round(lowest_value_rounded, 3) | |
record = f"{model_name} | epoch={epoch} | step={global_step} | {epoch_recorder.record()}" | |
if epoch > 1: | |
record = ( | |
record | |
+ f" | lowest_value={lowest_value_rounded} (epoch {lowest_value['epoch']} and step {lowest_value['step']})" | |
) | |
if overtraining_detector: | |
remaining_epochs_gen = overtraining_threshold - consecutive_increases_gen | |
remaining_epochs_disc = ( | |
overtraining_threshold * 2 - consecutive_increases_disc | |
) | |
record = ( | |
record | |
+ f" | Number of epochs remaining for overtraining: g/total: {remaining_epochs_gen} d/total: {remaining_epochs_disc} | smoothed_loss_gen={smoothed_value_gen:.3f} | smoothed_loss_disc={smoothed_value_disc:.3f}" | |
) | |
print(record) | |
last_loss_gen_all = loss_gen_all | |
if done: | |
os._exit(2333333) | |
def check_overtraining(smoothed_loss_history, threshold, epsilon=0.004): | |
""" | |
Checks for overtraining based on the smoothed loss history. | |
Args: | |
smoothed_loss_history (list): List of smoothed losses for each epoch. | |
threshold (int): Number of consecutive epochs with insignificant changes or increases to consider overtraining. | |
epsilon (float): The maximum change considered insignificant. | |
""" | |
if len(smoothed_loss_history) < threshold + 1: | |
return False | |
for i in range(-threshold, -1): | |
if smoothed_loss_history[i + 1] > smoothed_loss_history[i]: | |
return True | |
if abs(smoothed_loss_history[i + 1] - smoothed_loss_history[i]) >= epsilon: | |
return False | |
return True | |
def update_exponential_moving_average( | |
smoothed_loss_history, new_value, smoothing=0.987 | |
): | |
""" | |
Updates the exponential moving average with a new value. | |
Args: | |
smoothed_loss_history (list): List of smoothed values. | |
new_value (float): New value to be added. | |
smoothing (float): Smoothing factor. | |
""" | |
if smoothed_loss_history: | |
smoothed_value = ( | |
smoothing * smoothed_loss_history[-1] + (1 - smoothing) * new_value | |
) | |
else: | |
smoothed_value = new_value | |
smoothed_loss_history.append(smoothed_value) | |
return smoothed_value | |
def save_to_json( | |
file_path, | |
loss_disc_history, | |
smoothed_loss_disc_history, | |
loss_gen_history, | |
smoothed_loss_gen_history, | |
): | |
""" | |
Save the training history to a JSON file. | |
""" | |
data = { | |
"loss_disc_history": loss_disc_history, | |
"smoothed_loss_disc_history": smoothed_loss_disc_history, | |
"loss_gen_history": loss_gen_history, | |
"smoothed_loss_gen_history": smoothed_loss_gen_history, | |
} | |
with open(file_path, "w") as f: | |
json.dump(data, f) | |
if __name__ == "__main__": | |
torch.multiprocessing.set_start_method("spawn") | |
main() | |