Spaces:
Runtime error
Runtime error
import logging | |
import os | |
import sys | |
import warnings | |
import librosa | |
import numpy as np | |
import soundfile as sf | |
import wget | |
from torch import nn | |
from transformers import HubertModel | |
# Remove this to see warnings about transformers models | |
warnings.filterwarnings("ignore") | |
logging.getLogger("fairseq").setLevel(logging.ERROR) | |
logging.getLogger("faiss.loader").setLevel(logging.ERROR) | |
logging.getLogger("transformers").setLevel(logging.ERROR) | |
logging.getLogger("torch").setLevel(logging.ERROR) | |
now_dir = os.getcwd() | |
sys.path.append(now_dir) | |
base_path = os.path.join(now_dir, "rvc", "models", "formant", "stftpitchshift") | |
stft = base_path + ".exe" if sys.platform == "win32" else base_path | |
class HubertModelWithFinalProj(HubertModel): | |
def __init__(self, config): | |
super().__init__(config) | |
self.final_proj = nn.Linear(config.hidden_size, config.classifier_proj_size) | |
def load_audio_infer( | |
file, | |
sample_rate, | |
**kwargs, | |
): | |
formant_shifting = kwargs.get("formant_shifting", False) | |
try: | |
file = file.strip(" ").strip('"').strip("\n").strip('"').strip(" ") | |
if not os.path.isfile(file): | |
raise FileNotFoundError(f"File not found: {file}") | |
audio, sr = sf.read(file) | |
if len(audio.shape) > 1: | |
audio = librosa.to_mono(audio.T) | |
if sr != sample_rate: | |
audio = librosa.resample(audio, orig_sr=sr, target_sr=sample_rate) | |
if formant_shifting: | |
formant_qfrency = kwargs.get("formant_qfrency", 0.8) | |
formant_timbre = kwargs.get("formant_timbre", 0.8) | |
from stftpitchshift import StftPitchShift | |
pitchshifter = StftPitchShift(1024, 32, sample_rate) | |
audio = pitchshifter.shiftpitch( | |
audio, | |
factors=1, | |
quefrency=formant_qfrency * 1e-3, | |
distortion=formant_timbre, | |
) | |
except Exception as error: | |
raise RuntimeError(f"An error occurred loading the audio: {error}") | |
return np.array(audio).flatten() | |
def load_embedding(embedder_model, custom_embedder=None): | |
embedder_root = os.path.join(now_dir, "rvc", "models", "embedders") | |
embedding_list = { | |
"contentvec": os.path.join(embedder_root, "contentvec"), | |
"chinese-hubert-base": os.path.join(embedder_root, "chinese_hubert_base"), | |
"japanese-hubert-base": os.path.join(embedder_root, "japanese_hubert_base"), | |
"korean-hubert-base": os.path.join(embedder_root, "korean_hubert_base"), | |
} | |
online_embedders = { | |
"contentvec": "https://huggingface.co/IAHispano/Applio/resolve/main/Resources/embedders/contentvec/pytorch_model.bin", | |
"chinese-hubert-base": "https://huggingface.co/IAHispano/Applio/resolve/main/Resources/embedders/chinese_hubert_base/pytorch_model.bin", | |
"japanese-hubert-base": "https://huggingface.co/IAHispano/Applio/resolve/main/Resources/embedders/japanese_hubert_base/pytorch_model.bin", | |
"korean-hubert-base": "https://huggingface.co/IAHispano/Applio/resolve/main/Resources/embedders/korean_hubert_base/pytorch_model.bin", | |
} | |
config_files = { | |
"contentvec": "https://huggingface.co/IAHispano/Applio/resolve/main/Resources/embedders/contentvec/config.json", | |
"chinese-hubert-base": "https://huggingface.co/IAHispano/Applio/resolve/main/Resources/embedders/chinese_hubert_base/config.json", | |
"japanese-hubert-base": "https://huggingface.co/IAHispano/Applio/resolve/main/Resources/embedders/japanese_hubert_base/config.json", | |
"korean-hubert-base": "https://huggingface.co/IAHispano/Applio/resolve/main/Resources/embedders/korean_hubert_base/config.json", | |
} | |
if embedder_model == "custom": | |
if os.path.exists(custom_embedder): | |
model_path = custom_embedder | |
else: | |
print(f"Custom embedder not found: {custom_embedder}, using contentvec") | |
model_path = embedding_list["contentvec"] | |
else: | |
model_path = embedding_list[embedder_model] | |
bin_file = os.path.join(model_path, "pytorch_model.bin") | |
json_file = os.path.join(model_path, "config.json") | |
os.makedirs(model_path, exist_ok=True) | |
if not os.path.exists(bin_file): | |
url = online_embedders[embedder_model] | |
print(f"Downloading {url} to {model_path}...") | |
wget.download(url, out=bin_file) | |
if not os.path.exists(json_file): | |
url = config_files[embedder_model] | |
print(f"Downloading {url} to {model_path}...") | |
wget.download(url, out=json_file) | |
models = HubertModelWithFinalProj.from_pretrained(model_path) | |
return models | |