Spaces:
Runtime error
Runtime error
import os | |
import sys | |
import time | |
import torch | |
import librosa | |
import logging | |
import traceback | |
import numpy as np | |
import soundfile as sf | |
import noisereduce as nr | |
from pedalboard import ( | |
Pedalboard, | |
) | |
from pedalboard_native import ( | |
Chorus, | |
Distortion, | |
Reverb, | |
PitchShift, | |
Limiter, | |
Gain, | |
Bitcrush, | |
Clipping, | |
Compressor, | |
Delay, | |
) | |
now_dir = os.getcwd() | |
sys.path.append(now_dir) | |
from rvc.infer.pipeline import Pipeline as VC | |
from rvc.lib.utils import load_audio_infer, load_embedding | |
from rvc.lib.tools.split_audio import process_audio, merge_audio | |
from rvc.lib.algorithm.synthesizers import Synthesizer | |
from rvc.configs.config import Config | |
logging.getLogger("httpx").setLevel(logging.WARNING) | |
logging.getLogger("httpcore").setLevel(logging.WARNING) | |
logging.getLogger("faiss").setLevel(logging.WARNING) | |
logging.getLogger("faiss.loader").setLevel(logging.WARNING) | |
class VoiceConverter: | |
""" | |
A class for performing voice conversion using the Retrieval-Based Voice Conversion (RVC) method. | |
""" | |
def __init__(self): | |
""" | |
Initializes the VoiceConverter with default configuration, and sets up models and parameters. | |
""" | |
self.config = Config() # Load RVC configuration | |
self.hubert_model = ( | |
None # Initialize the Hubert model (for embedding extraction) | |
) | |
self.last_embedder_model = None # Last used embedder model | |
self.tgt_sr = None # Target sampling rate for the output audio | |
self.net_g = None # Generator network for voice conversion | |
self.vc = None # Voice conversion pipeline instance | |
self.cpt = None # Checkpoint for loading model weights | |
self.version = None # Model version | |
self.n_spk = None # Number of speakers in the model | |
self.use_f0 = None # Whether the model uses F0 | |
self.loaded_model = None | |
def load_hubert(self, embedder_model: str, embedder_model_custom: str | None = None): | |
""" | |
Loads the HuBERT model for speaker embedding extraction. | |
Args: | |
embedder_model (str): Path to the pre-trained HuBERT model. | |
embedder_model_custom (str): Path to the custom HuBERT model. | |
""" | |
self.hubert_model = load_embedding(embedder_model, embedder_model_custom) | |
self.hubert_model.to(self.config.device) | |
self.hubert_model = ( | |
self.hubert_model.half() | |
if self.config.is_half | |
else self.hubert_model.float() | |
) | |
self.hubert_model.eval() | |
def remove_audio_noise(data, sr, reduction_strength=0.7): | |
""" | |
Removes noise from an audio file using the NoiseReduce library. | |
Args: | |
data (numpy.ndarray): The audio data as a NumPy array. | |
sr (int): The sample rate of the audio data. | |
reduction_strength (float): Strength of the noise reduction. Default is 0.7. | |
""" | |
try: | |
reduced_noise = nr.reduce_noise( | |
y=data, sr=sr, prop_decrease=reduction_strength | |
) | |
return reduced_noise | |
except Exception as error: | |
print(f"An error occurred removing audio noise: {error}") | |
return None | |
def convert_audio_format(input_path, output_path, output_format): | |
""" | |
Converts an audio file to a specified output format. | |
Args: | |
input_path (str): Path to the input audio file. | |
output_path (str): Path to the output audio file. | |
output_format (str): Desired audio format (e.g., "WAV", "MP3"). | |
""" | |
try: | |
if output_format != "WAV": | |
print(f"Converting audio to {output_format} format...") | |
audio, sample_rate = librosa.load(input_path, sr=None) | |
common_sample_rates = [ | |
8000, | |
11025, | |
12000, | |
16000, | |
22050, | |
24000, | |
32000, | |
44100, | |
48000, | |
] | |
target_sr = min(common_sample_rates, key=lambda x: abs(x - sample_rate)) | |
audio = librosa.resample( | |
audio, orig_sr=sample_rate, target_sr=target_sr | |
) | |
sf.write(output_path, audio, target_sr, format=output_format.lower()) | |
return output_path | |
except Exception as error: | |
print(f"An error occurred converting the audio format: {error}") | |
def post_process_audio( | |
audio_input, | |
sample_rate, | |
**kwargs, | |
): | |
board = Pedalboard() | |
if kwargs.get("reverb", False): | |
reverb = Reverb( | |
room_size=kwargs.get("reverb_room_size", 0.5), | |
damping=kwargs.get("reverb_damping", 0.5), | |
wet_level=kwargs.get("reverb_wet_level", 0.33), | |
dry_level=kwargs.get("reverb_dry_level", 0.4), | |
width=kwargs.get("reverb_width", 1.0), | |
freeze_mode=kwargs.get("reverb_freeze_mode", 0), | |
) | |
board.append(reverb) | |
if kwargs.get("pitch_shift", False): | |
pitch_shift = PitchShift(semitones=kwargs.get("pitch_shift_semitones", 0)) | |
board.append(pitch_shift) | |
if kwargs.get("limiter", False): | |
limiter = Limiter( | |
threshold_db=kwargs.get("limiter_threshold", -6), | |
release_ms=kwargs.get("limiter_release", 0.05), | |
) | |
board.append(limiter) | |
if kwargs.get("gain", False): | |
gain = Gain(gain_db=kwargs.get("gain_db", 0)) | |
board.append(gain) | |
if kwargs.get("distortion", False): | |
distortion = Distortion(drive_db=kwargs.get("distortion_gain", 25)) | |
board.append(distortion) | |
if kwargs.get("chorus", False): | |
chorus = Chorus( | |
rate_hz=kwargs.get("chorus_rate", 1.0), | |
depth=kwargs.get("chorus_depth", 0.25), | |
centre_delay_ms=kwargs.get("chorus_delay", 7), | |
feedback=kwargs.get("chorus_feedback", 0.0), | |
mix=kwargs.get("chorus_mix", 0.5), | |
) | |
board.append(chorus) | |
if kwargs.get("bitcrush", False): | |
bitcrush = Bitcrush(bit_depth=kwargs.get("bitcrush_bit_depth", 8)) | |
board.append(bitcrush) | |
if kwargs.get("clipping", False): | |
clipping = Clipping(threshold_db=kwargs.get("clipping_threshold", 0)) | |
board.append(clipping) | |
if kwargs.get("compressor", False): | |
compressor = Compressor( | |
threshold_db=kwargs.get("compressor_threshold", 0), | |
ratio=kwargs.get("compressor_ratio", 1), | |
attack_ms=kwargs.get("compressor_attack", 1.0), | |
release_ms=kwargs.get("compressor_release", 100), | |
) | |
board.append(compressor) | |
if kwargs.get("delay", False): | |
delay = Delay( | |
delay_seconds=kwargs.get("delay_seconds", 0.5), | |
feedback=kwargs.get("delay_feedback", 0.0), | |
mix=kwargs.get("delay_mix", 0.5), | |
) | |
board.append(delay) | |
return board(audio_input, sample_rate) | |
def convert_audio( | |
self, | |
audio_input_path: str, | |
audio_output_path: str, | |
model_path: str, | |
index_path: str, | |
pitch: int = 0, | |
f0_file: str | None = None, | |
f0_method: str = "rmvpe", | |
index_rate: float = 0.75, | |
volume_envelope: float = 1, | |
protect: float = 0.5, | |
hop_length: int = 128, | |
split_audio: bool = False, | |
f0_autotune: bool = False, | |
f0_autotune_strength: float = 1, | |
filter_radius: int = 3, | |
embedder_model: str = "contentvec", | |
embedder_model_custom: str | None = None, | |
clean_audio: bool = False, | |
clean_strength: float = 0.5, | |
export_format: str = "WAV", | |
upscale_audio: bool = False, | |
post_process: bool = False, | |
resample_sr: int = 0, | |
sid: int = 0, | |
**kwargs, | |
): | |
""" | |
Performs voice conversion on the input audio. | |
Args: | |
pitch (int): Key for F0 up-sampling. | |
filter_radius (int): Radius for filtering. | |
index_rate (float): Rate for index matching. | |
volume_envelope (int): RMS mix rate. | |
protect (float): Protection rate for certain audio segments. | |
hop_length (int): Hop length for audio processing. | |
f0_method (str): Method for F0 extraction. | |
audio_input_path (str): Path to the input audio file. | |
audio_output_path (str): Path to the output audio file. | |
model_path (str): Path to the voice conversion model. | |
index_path (str): Path to the index file. | |
split_audio (bool): Whether to split the audio for processing. | |
f0_autotune (bool): Whether to use F0 autotune. | |
clean_audio (bool): Whether to clean the audio. | |
clean_strength (float): Strength of the audio cleaning. | |
export_format (str): Format for exporting the audio. | |
upscale_audio (bool): Whether to upscale the audio. | |
f0_file (str): Path to the F0 file. | |
embedder_model (str): Path to the embedder model. | |
embedder_model_custom (str): Path to the custom embedder model. | |
resample_sr (int, optional): Resample sampling rate. Default is 0. | |
sid (int, optional): Speaker ID. Default is 0. | |
**kwargs: Additional keyword arguments. | |
""" | |
self.get_vc(model_path, sid) | |
try: | |
start_time = time.time() | |
print(f"Converting audio '{audio_input_path}'...") | |
if upscale_audio == True: | |
from audio_upscaler import upscale | |
upscale(audio_input_path, audio_input_path) | |
audio = load_audio_infer( | |
audio_input_path, | |
16000, | |
**kwargs, | |
) | |
audio_max = np.abs(audio).max() / 0.95 | |
if audio_max > 1: | |
audio /= audio_max | |
if not self.hubert_model or embedder_model != self.last_embedder_model: | |
self.load_hubert(embedder_model, embedder_model_custom) | |
self.last_embedder_model = embedder_model | |
file_index = ( | |
index_path.strip() | |
.strip('"') | |
.strip("\n") | |
.strip('"') | |
.strip() | |
.replace("trained", "added") | |
) | |
if self.tgt_sr != resample_sr >= 16000: | |
self.tgt_sr = resample_sr | |
if split_audio: | |
chunks, intervals = process_audio(audio, 16000) | |
print(f"Audio split into {len(chunks)} chunks for processing.") | |
else: | |
chunks = [] | |
chunks.append(audio) | |
converted_chunks = [] | |
for c in chunks: | |
if self.vc is None: | |
raise Exception("Voice conversion model not loaded.") | |
audio_opt = self.vc.pipeline( | |
model=self.hubert_model, | |
net_g=self.net_g, | |
sid=sid, | |
audio=c, | |
pitch=pitch, | |
f0_method=f0_method, | |
file_index=file_index, | |
index_rate=index_rate, | |
pitch_guidance=self.use_f0, | |
filter_radius=filter_radius, | |
volume_envelope=volume_envelope, | |
version=self.version, | |
protect=protect, | |
hop_length=hop_length, | |
f0_autotune=f0_autotune, | |
f0_autotune_strength=f0_autotune_strength, | |
f0_file=f0_file, | |
) | |
converted_chunks.append(audio_opt) | |
if split_audio: | |
print(f"Converted audio chunk {len(converted_chunks)}") | |
if split_audio: | |
audio_opt = merge_audio(converted_chunks, intervals, 16000, self.tgt_sr) | |
else: | |
audio_opt = converted_chunks[0] | |
if clean_audio: | |
cleaned_audio = self.remove_audio_noise( | |
audio_opt, self.tgt_sr, clean_strength | |
) | |
if cleaned_audio is not None: | |
audio_opt = cleaned_audio | |
if post_process: | |
audio_opt = self.post_process_audio( | |
audio_input=audio_opt, | |
sample_rate=self.tgt_sr, | |
**kwargs, | |
) | |
sf.write(audio_output_path, audio_opt, self.tgt_sr, format="WAV") | |
output_path_format = audio_output_path.replace( | |
".wav", f".{export_format.lower()}" | |
) | |
audio_output_path = self.convert_audio_format( | |
audio_output_path, output_path_format, export_format | |
) | |
elapsed_time = time.time() - start_time | |
print( | |
f"Conversion completed at '{audio_output_path}' in {elapsed_time:.2f} seconds." | |
) | |
except Exception as error: | |
print(f"An error occurred during audio conversion: {error}") | |
print(traceback.format_exc()) | |
def convert_audio_batch( | |
self, | |
audio_input_paths: str, | |
audio_output_path: str, | |
**kwargs, | |
): | |
""" | |
Performs voice conversion on a batch of input audio files. | |
Args: | |
audio_input_paths (str): List of paths to the input audio files. | |
audio_output_path (str): Path to the output audio file. | |
resample_sr (int, optional): Resample sampling rate. Default is 0. | |
sid (int, optional): Speaker ID. Default is 0. | |
**kwargs: Additional keyword arguments. | |
""" | |
pid = os.getpid() | |
try: | |
with open( | |
os.path.join(now_dir, "assets", "infer_pid.txt"), "w" | |
) as pid_file: | |
pid_file.write(str(pid)) | |
start_time = time.time() | |
print(f"Converting audio batch '{audio_input_paths}'...") | |
audio_files = [ | |
f | |
for f in os.listdir(audio_input_paths) | |
if f.endswith( | |
( | |
"wav", | |
"mp3", | |
"flac", | |
"ogg", | |
"opus", | |
"m4a", | |
"mp4", | |
"aac", | |
"alac", | |
"wma", | |
"aiff", | |
"webm", | |
"ac3", | |
) | |
) | |
] | |
print(f"Detected {len(audio_files)} audio files for inference.") | |
for a in audio_files: | |
new_input = os.path.join(audio_input_paths, a) | |
new_output = os.path.splitext(a)[0] + "_output.wav" | |
new_output = os.path.join(audio_output_path, new_output) | |
if os.path.exists(new_output): | |
continue | |
self.convert_audio( | |
audio_input_path=new_input, | |
audio_output_path=new_output, | |
**kwargs, | |
) | |
print(f"Conversion completed at '{audio_input_paths}'.") | |
elapsed_time = time.time() - start_time | |
print(f"Batch conversion completed in {elapsed_time:.2f} seconds.") | |
except Exception as error: | |
print(f"An error occurred during audio batch conversion: {error}") | |
print(traceback.format_exc()) | |
finally: | |
os.remove(os.path.join(now_dir, "assets", "infer_pid.txt")) | |
def get_vc(self, weight_root, sid): | |
""" | |
Loads the voice conversion model and sets up the pipeline. | |
Args: | |
weight_root (str): Path to the model weights. | |
sid (int): Speaker ID. | |
""" | |
if sid == "" or sid == []: | |
self.cleanup_model() | |
if torch.cuda.is_available(): | |
torch.cuda.empty_cache() | |
if not self.loaded_model or self.loaded_model != weight_root: | |
self.load_model(weight_root) | |
if self.cpt is not None: | |
self.setup_network() | |
self.setup_vc_instance() | |
self.loaded_model = weight_root | |
def cleanup_model(self): | |
""" | |
Cleans up the model and releases resources. | |
""" | |
if self.hubert_model is not None: | |
del self.net_g, self.n_spk, self.vc, self.hubert_model, self.tgt_sr | |
self.hubert_model = self.net_g = self.n_spk = self.vc = self.tgt_sr = None | |
if torch.cuda.is_available(): | |
torch.cuda.empty_cache() | |
del self.net_g, self.cpt | |
if torch.cuda.is_available(): | |
torch.cuda.empty_cache() | |
self.cpt = None | |
def load_model(self, weight_root): | |
""" | |
Loads the model weights from the specified path. | |
Args: | |
weight_root (str): Path to the model weights. | |
""" | |
self.cpt = ( | |
torch.load(weight_root, map_location="cpu") | |
if os.path.isfile(weight_root) | |
else None | |
) | |
def setup_network(self): | |
""" | |
Sets up the network configuration based on the loaded checkpoint. | |
""" | |
if self.cpt is not None: | |
self.tgt_sr = self.cpt["config"][-1] | |
self.cpt["config"][-3] = self.cpt["weight"]["emb_g.weight"].shape[0] | |
self.use_f0 = self.cpt.get("f0", 1) | |
self.version = self.cpt.get("version", "v1") | |
self.text_enc_hidden_dim = 768 if self.version == "v2" else 256 | |
self.net_g = Synthesizer( | |
*self.cpt["config"], | |
use_f0=self.use_f0, | |
text_enc_hidden_dim=self.text_enc_hidden_dim, | |
is_half=self.config.is_half, | |
) | |
del self.net_g.enc_q | |
self.net_g.load_state_dict(self.cpt["weight"], strict=False) | |
self.net_g.eval().to(self.config.device) | |
self.net_g = ( | |
self.net_g.half() if self.config.is_half else self.net_g.float() | |
) | |
def setup_vc_instance(self): | |
""" | |
Sets up the voice conversion pipeline instance based on the target sampling rate and configuration. | |
""" | |
if self.cpt is not None: | |
self.vc = VC(self.tgt_sr, self.config) | |
self.n_spk = self.cpt["config"][-3] | |