Spaces:
Configuration error
Configuration error
## Inverse Cooking: Recipe Generation from Food Images | |
Code supporting the paper: | |
*Amaia Salvador, Michal Drozdzal, Xavier Giro-i-Nieto, Adriana Romero. | |
[Inverse Cooking: Recipe Generation from Food Images. ](https://arxiv.org/abs/1812.06164) | |
CVPR 2019* | |
If you find this code useful in your research, please consider citing using the | |
following BibTeX entry: | |
``` | |
@InProceedings{Salvador2019inversecooking, | |
author = {Salvador, Amaia and Drozdzal, Michal and Giro-i-Nieto, Xavier and Romero, Adriana}, | |
title = {Inverse Cooking: Recipe Generation From Food Images}, | |
booktitle = {The IEEE Conference on Computer Vision and Pattern Recognition (CVPR)}, | |
month = {June}, | |
year = {2019} | |
} | |
``` | |
### Installation | |
This code uses Python 3.6 and PyTorch 0.4.1 cuda version 9.0. | |
- Installing PyTorch: | |
```bash | |
$ conda install pytorch=0.4.1 cuda90 -c pytorch | |
``` | |
- Install dependencies | |
```bash | |
$ pip install -r requirements.txt | |
``` | |
### Pretrained model | |
- Download ingredient and instruction vocabularies [here](https://dl.fbaipublicfiles.com/inversecooking/ingr_vocab.pkl) and [here](https://dl.fbaipublicfiles.com/inversecooking/instr_vocab.pkl), respectively. | |
- Download pretrained model [here](https://dl.fbaipublicfiles.com/inversecooking/modelbest.ckpt). | |
### Demo | |
You can use our pretrained model to get recipes for your images. | |
Download the required files (listed above), place them under the ```data``` directory, and try our demo notebook ```src/demo.ipynb```. | |
Note: The demo will run on GPU if a device is found, else it will use CPU. | |
### Data | |
- Download [Recipe1M](http://im2recipe.csail.mit.edu/dataset/download) (registration required) | |
- Extract files somewhere (we refer to this path as ```path_to_dataset```). | |
- The contents of ```path_to_dataset``` should be the following: | |
``` | |
det_ingrs.json | |
layer1.json | |
layer2.json | |
images/ | |
images/train | |
images/val | |
images/test | |
``` | |
*Note: all python calls below must be run from ```./src```* | |
### Build vocabularies | |
```bash | |
$ python build_vocab.py --recipe1m_path path_to_dataset | |
``` | |
### Images to LMDB (Optional, but recommended) | |
For fast loading during training: | |
```bash | |
$ python utils/ims2file.py --recipe1m_path path_to_dataset | |
``` | |
If you decide not to create this file, use the flag ```--load_jpeg``` when training the model. | |
### Training | |
Create a directory to store checkpoints for all models you train | |
(e.g. ```../checkpoints``` and point ```--save_dir``` to it.) | |
We train our model in two stages: | |
1. Ingredient prediction from images | |
```bash | |
python train.py --model_name im2ingr --batch_size 150 --finetune_after 0 --ingrs_only \ | |
--es_metric iou_sample --loss_weight 0 1000.0 1.0 1.0 \ | |
--learning_rate 1e-4 --scale_learning_rate_cnn 1.0 \ | |
--save_dir ../checkpoints --recipe1m_dir path_to_dataset | |
``` | |
2. Recipe generation from images and ingredients (loading from 1.) | |
```bash | |
python train.py --model_name model --batch_size 256 --recipe_only --transfer_from im2ingr \ | |
--save_dir ../checkpoints --recipe1m_dir path_to_dataset | |
``` | |
Check training progress with Tensorboard from ```../checkpoints```: | |
```bash | |
$ tensorboard --logdir='../tb_logs' --port=6006 | |
``` | |
### Evaluation | |
- Save generated recipes to disk with | |
```python sample.py --model_name model --save_dir ../checkpoints --recipe1m_dir path_to_dataset --greedy --eval_split test```. | |
- This script will return ingredient metrics (F1 and IoU) | |
### License | |
inversecooking is released under MIT license, see [LICENSE](LICENSE.md) for details. | |