Spaces:
Running
Running
from open_webui.utils.task import prompt_template, prompt_variables_template | |
from open_webui.utils.misc import ( | |
add_or_update_system_message, | |
) | |
from typing import Callable, Optional | |
import json | |
# inplace function: form_data is modified | |
def apply_model_system_prompt_to_body( | |
params: dict, form_data: dict, metadata: Optional[dict] = None, user=None | |
) -> dict: | |
system = params.get("system", None) | |
if not system: | |
return form_data | |
# Metadata (WebUI Usage) | |
if metadata: | |
variables = metadata.get("variables", {}) | |
if variables: | |
system = prompt_variables_template(system, variables) | |
# Legacy (API Usage) | |
if user: | |
template_params = { | |
"user_name": user.name, | |
"user_location": user.info.get("location") if user.info else None, | |
} | |
else: | |
template_params = {} | |
system = prompt_template(system, **template_params) | |
form_data["messages"] = add_or_update_system_message( | |
system, form_data.get("messages", []) | |
) | |
return form_data | |
# inplace function: form_data is modified | |
def apply_model_params_to_body( | |
params: dict, form_data: dict, mappings: dict[str, Callable] | |
) -> dict: | |
if not params: | |
return form_data | |
for key, cast_func in mappings.items(): | |
if (value := params.get(key)) is not None: | |
form_data[key] = cast_func(value) | |
return form_data | |
# inplace function: form_data is modified | |
def apply_model_params_to_body_openai(params: dict, form_data: dict) -> dict: | |
mappings = { | |
"temperature": float, | |
"top_p": float, | |
"max_tokens": int, | |
"frequency_penalty": float, | |
"reasoning_effort": str, | |
"seed": lambda x: x, | |
"stop": lambda x: [bytes(s, "utf-8").decode("unicode_escape") for s in x], | |
"logit_bias": lambda x: x, | |
} | |
return apply_model_params_to_body(params, form_data, mappings) | |
def apply_model_params_to_body_ollama(params: dict, form_data: dict) -> dict: | |
# Convert OpenAI parameter names to Ollama parameter names if needed. | |
name_differences = { | |
"max_tokens": "num_predict", | |
} | |
for key, value in name_differences.items(): | |
if (param := params.get(key, None)) is not None: | |
# Copy the parameter to new name then delete it, to prevent Ollama warning of invalid option provided | |
params[value] = params[key] | |
del params[key] | |
# See https://github.com/ollama/ollama/blob/main/docs/api.md#request-8 | |
mappings = { | |
"temperature": float, | |
"top_p": float, | |
"seed": lambda x: x, | |
"mirostat": int, | |
"mirostat_eta": float, | |
"mirostat_tau": float, | |
"num_ctx": int, | |
"num_batch": int, | |
"num_keep": int, | |
"num_predict": int, | |
"repeat_last_n": int, | |
"top_k": int, | |
"min_p": float, | |
"typical_p": float, | |
"repeat_penalty": float, | |
"presence_penalty": float, | |
"frequency_penalty": float, | |
"penalize_newline": bool, | |
"stop": lambda x: [bytes(s, "utf-8").decode("unicode_escape") for s in x], | |
"numa": bool, | |
"num_gpu": int, | |
"main_gpu": int, | |
"low_vram": bool, | |
"vocab_only": bool, | |
"use_mmap": bool, | |
"use_mlock": bool, | |
"num_thread": int, | |
} | |
return apply_model_params_to_body(params, form_data, mappings) | |
def convert_messages_openai_to_ollama(messages: list[dict]) -> list[dict]: | |
ollama_messages = [] | |
for message in messages: | |
# Initialize the new message structure with the role | |
new_message = {"role": message["role"]} | |
content = message.get("content", []) | |
tool_calls = message.get("tool_calls", None) | |
tool_call_id = message.get("tool_call_id", None) | |
# Check if the content is a string (just a simple message) | |
if isinstance(content, str) and not tool_calls: | |
# If the content is a string, it's pure text | |
new_message["content"] = content | |
# If message is a tool call, add the tool call id to the message | |
if tool_call_id: | |
new_message["tool_call_id"] = tool_call_id | |
elif tool_calls: | |
# If tool calls are present, add them to the message | |
ollama_tool_calls = [] | |
for tool_call in tool_calls: | |
ollama_tool_call = { | |
"index": tool_call.get("index", 0), | |
"id": tool_call.get("id", None), | |
"function": { | |
"name": tool_call.get("function", {}).get("name", ""), | |
"arguments": json.loads( | |
tool_call.get("function", {}).get("arguments", {}) | |
), | |
}, | |
} | |
ollama_tool_calls.append(ollama_tool_call) | |
new_message["tool_calls"] = ollama_tool_calls | |
# Put the content to empty string (Ollama requires an empty string for tool calls) | |
new_message["content"] = "" | |
else: | |
# Otherwise, assume the content is a list of dicts, e.g., text followed by an image URL | |
content_text = "" | |
images = [] | |
# Iterate through the list of content items | |
for item in content: | |
# Check if it's a text type | |
if item.get("type") == "text": | |
content_text += item.get("text", "") | |
# Check if it's an image URL type | |
elif item.get("type") == "image_url": | |
img_url = item.get("image_url", {}).get("url", "") | |
if img_url: | |
# If the image url starts with data:, it's a base64 image and should be trimmed | |
if img_url.startswith("data:"): | |
img_url = img_url.split(",")[-1] | |
images.append(img_url) | |
# Add content text (if any) | |
if content_text: | |
new_message["content"] = content_text.strip() | |
# Add images (if any) | |
if images: | |
new_message["images"] = images | |
# Append the new formatted message to the result | |
ollama_messages.append(new_message) | |
return ollama_messages | |
def convert_payload_openai_to_ollama(openai_payload: dict) -> dict: | |
""" | |
Converts a payload formatted for OpenAI's API to be compatible with Ollama's API endpoint for chat completions. | |
Args: | |
openai_payload (dict): The payload originally designed for OpenAI API usage. | |
Returns: | |
dict: A modified payload compatible with the Ollama API. | |
""" | |
ollama_payload = {} | |
# Mapping basic model and message details | |
ollama_payload["model"] = openai_payload.get("model") | |
ollama_payload["messages"] = convert_messages_openai_to_ollama( | |
openai_payload.get("messages") | |
) | |
ollama_payload["stream"] = openai_payload.get("stream", False) | |
if "tools" in openai_payload: | |
ollama_payload["tools"] = openai_payload["tools"] | |
if "format" in openai_payload: | |
ollama_payload["format"] = openai_payload["format"] | |
# If there are advanced parameters in the payload, format them in Ollama's options field | |
if openai_payload.get("options"): | |
ollama_payload["options"] = openai_payload["options"] | |
ollama_options = openai_payload["options"] | |
# Re-Mapping OpenAI's `max_tokens` -> Ollama's `num_predict` | |
if "max_tokens" in ollama_options: | |
ollama_options["num_predict"] = ollama_options["max_tokens"] | |
del ollama_options[ | |
"max_tokens" | |
] # To prevent Ollama warning of invalid option provided | |
# Ollama lacks a "system" prompt option. It has to be provided as a direct parameter, so we copy it down. | |
if "system" in ollama_options: | |
ollama_payload["system"] = ollama_options["system"] | |
del ollama_options[ | |
"system" | |
] # To prevent Ollama warning of invalid option provided | |
# If there is the "stop" parameter in the openai_payload, remap it to the ollama_payload.options | |
if "stop" in openai_payload: | |
ollama_options = ollama_payload.get("options", {}) | |
ollama_options["stop"] = openai_payload.get("stop") | |
ollama_payload["options"] = ollama_options | |
if "metadata" in openai_payload: | |
ollama_payload["metadata"] = openai_payload["metadata"] | |
return ollama_payload | |