Trevapp / app.py
judebebo32's picture
Update app.py
69f5007 verified
import os
import nltk
from nltk.corpus import stopwords
from nltk.stem import PorterStemmer
from nltk.tokenize import word_tokenize
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics.pairwise import cosine_similarity
import gradio as gr
# Ensure necessary NLTK downloads
nltk.download('punkt')
nltk.download('stopwords')
# Path to the dataset file
file_path = 'my_text_file.txt'
# Check if the file exists
if not os.path.exists(file_path):
raise FileNotFoundError(f"{file_path} not found in the environment.")
# Load the dataset
with open(file_path, 'r') as f:
data = f.readlines()
# Ensure the data is loaded correctly
if not data:
raise ValueError("The dataset is empty or could not be loaded properly.")
# Preprocessing function for text
def preprocess_text(text):
tokens = word_tokenize(text.lower())
stop_words = set(stopwords.words('english'))
filtered_tokens = [word for word in tokens if word not in stop_words]
stemmer = PorterStemmer()
stemmed_tokens = [stemmer.stem(word) for word in filtered_tokens]
return stemmed_tokens
# Create a TF-IDF vectorizer
vectorizer = TfidfVectorizer(analyzer=preprocess_text)
tfidf_matrix = vectorizer.fit_transform(data)
# Chatbot response function
def chatbot_response(user_input):
input_vector = vectorizer.transform([user_input])
cosine_similarities = cosine_similarity(input_vector, tfidf_matrix)
most_similar_index = cosine_similarities.argmax()
return data[most_similar_index].strip()
# Gradio interface
def chatbot_interface(user_input):
response = chatbot_response(user_input)
return response
# Create a Gradio interface for the chatbot
iface = gr.Interface(fn=chatbot_interface,
inputs="text",
outputs="text",
title="FAQ Chatbot",
description="Ask a question to the FAQ chatbot.")
# Launch the Gradio app
if __name__ == "__main__":
iface.launch()