deep-thinking / app.py
jx-yang's picture
<ADD> optimize code
46dec79
raw
history blame
9.04 kB
import json
from pathlib import Path
import gradio as gr
import torch
from torch.nn import functional as F
from torch.utils.data import DataLoader
from common import setup_cpu
from models import build_tokenizer, build_model
from models.meta_optimizer import AttnOptimWrapper
from tasks import load_task
from tasks.loader import TokenizedForMCRightPad
DISPLAY_MAPPING = {
"sst2": {"positive": "Pos", "negative": "Neg"},
}
@torch.no_grad()
def do_infer_probs(model, exemplar_attn_kv, exemplar_attn_mask, batched_choices_input):
batched_choices_logprobs = []
for batched_one_choice_input in batched_choices_input:
(
batch_input_ids,
batch_attention_mask,
batch_choice_start,
batch_choice_end,
) = batched_one_choice_input
bs = len(batch_input_ids)
merged_attn_mask = torch.cat((exemplar_attn_mask.expand(bs, -1), batch_attention_mask), dim=1)
# [B, #Heads, Length, Hidden]
expand_exemplar_attn_kv = [[layer_k.expand((bs, -1, -1, -1)), layer_v.expand((bs, -1, -1, -1))] for layer_k, layer_v in exemplar_attn_kv]
batched_logits = model(
input_ids=batch_input_ids, # [B, L']
attention_mask=merged_attn_mask, # [B, L + L']
past_key_values=expand_exemplar_attn_kv, # num_layers * 2 * [B, num_heads, L, H]
).logits
batched_output = F.log_softmax(batched_logits, dim=-1) # [B, L', Vocab]
batched_one_choice_logprobs = []
for input_ids, choice_start, choice_end, lm_logprobs in zip(batch_input_ids, batch_choice_start, batch_choice_end, batched_output):
choice_tokens = input_ids[choice_start:choice_end].unsqueeze(1) # [L, 1]
choice_logprobs = lm_logprobs[choice_start - 1 : choice_end - 1] # [L, Vocab]
extracted = torch.gather(choice_logprobs, -1, choice_tokens).squeeze(-1)
choice_length = choice_end - choice_start
lm_log_p = torch.sum(extracted).item()
norm_lm_log_p = (lm_log_p / choice_length).item()
choice_lm_info = {"lm_log_p": lm_log_p, "norm_lm_log_p": norm_lm_log_p}
batched_one_choice_logprobs.append(choice_lm_info)
batched_choices_logprobs.append(batched_one_choice_logprobs)
return batched_choices_logprobs
@torch.no_grad()
def process_once(dataset_name, exemplar_str, forward_steps, raw_data):
setup_cpu(seed=seed)
TaskHandler = load_task(dataset_name)
task_agent = TaskHandler(prompt_version)
processed_data = task_agent.dataset_preprocess(raw_data)
dataset = TokenizedForMCRightPad(processed_data, tokenizer, task_agent.multiple_choice_promptify)
exemplar_input_ids, exemplar_attn_mask = dataset.tokenize_demonstration(exemplar_str)
loader = DataLoader(dataset, shuffle=False, drop_last=False, batch_size=1)
meta_optim = AttnOptimWrapper(model, model_name, step_size=step_size, momentum=momentum)
meta_optim.init()
for _ in range(forward_steps):
exemplar_kv = meta_optim.step(exemplar_input_ids)
generated_info = [] # question * [choice0_prob, choice1_prob]
for batch_input in loader:
batch_output = do_infer_probs(model, exemplar_kv, exemplar_attn_mask.unsqueeze(0), batch_input) # [batch_of_choice0, batch_of_choice1, ...]
zipped_logprobs = list(zip(*batch_output)) # batch * (choice0, choice1, ...)
generated_info.extend(zipped_logprobs)
all_predicted = []
num_correct = 0
for idx, (data, choice_info) in enumerate(zip(processed_data, generated_info)):
merged_choice_info = task_agent.merge_choice_info(choice_info)
merged_predictions_idx = task_agent.choice_info_to_predictions(merged_choice_info)["lm_log_p"]
predicted = task_agent.CHOICES[merged_predictions_idx]
ground_truth = task_agent.CHOICES[data["answer_idx"]]
res = f"{DISPLAY_MAPPING[dataset_name][predicted]}"
if predicted == ground_truth:
res += " βœ…"
num_correct += 1
else:
res += " ❌"
all_predicted.append(res)
all_predicted.append(f"{100*num_correct / len(all_predicted):.2f}%")
return all_predicted
def transpose(l):
return list(map(list, zip(*l)))
def button_pressed(prev_state):
dataset_name = prev_state["dataset_name"]
exemplar_str = prev_state["exemplar_str"]
forward_steps = prev_state["step"] + 2
raw_data = prev_state["raw_data"]
prev_table_data = prev_state["table_data"]
current_output = process_once(dataset_name, exemplar_str, forward_steps, raw_data)
t_prev = transpose(prev_table_data)
if forward_steps == 1:
t_prev.append(["**ICL**"] + current_output)
else:
t_prev.append([f"**Step={forward_steps}**"] + current_output)
updated_table_data = transpose(t_prev)
ret = [
{
"dataset_name": dataset_name,
"exemplar_str": exemplar_str,
"raw_data": raw_data,
"step": forward_steps,
"table_data": updated_table_data,
},
f"Click here to train LLM ! Now Step: {forward_steps}",
updated_table_data,
]
return ret
if __name__ == "__main__":
dataset_name = "sst2"
seed = 0
prompt_version = "default"
kv_iter = 10
model_name, model_size = "opt", "125m"
step_size, momentum = 0.01, 0.9
setup_cpu(seed=seed)
tokenizer = build_tokenizer(model_name, model_size, padding_side="right")
model = build_model(model_name, model_size, False)
torch.autograd.set_grad_enabled(False)
print(f"Dataset: {dataset_name}")
task_root = Path("example_sets").joinpath(dataset_name)
with task_root.joinpath("demos.txt").open("r") as f:
demos = f.read()
with task_root.joinpath("sample.pkl").open("r") as f:
raw_data = json.load(f)
icl_result = process_once(dataset_name, demos, 1, raw_data)
text = """We utilize a Large Language Model (LLM) to perform in-context learning (ICL) for sentiment classification of movie reviews.
Taking the following two labeled examples as demonstrations, we predict the sentiment of the subsequent test input.
Directly employing ICL results in lower prediction accuracy. However, in our proposed approach, **Deep-Thinking**, we repeatedly apply **Forward Tuning**, leading to improved accuracy of the model."""
css = """
#the-table { overflow: auto; }
#the-table > div:nth-child(2) { margin: auto; width: fit-content; }
#the-table > div > div > div > table { width: auto; margin: 0; white-space: normal; }
#the-table > div > div > div > table > thead {display: none}
#the-table > div > div > div > table > tbody > tr:last-child {background-color: beige}
#the-table > div > div > div > table > tbody > tr:first-child {background-color: lightgray}
#the-table > div > div > div > table > tbody > tr > td:first-child {min-width: 300px;}
#the-table > div > div > div > table > tbody > tr > td:not(:first-child) {white-space: nowrap; padding: 0 2px; }
#the-text { font-size: large; }
"""
title = "πŸ€” Iterative Forward Tuning Boosts In-context Learning in Language Models"
demo = gr.Blocks(css=css, title="πŸ€”Deep-Thinking")
with demo:
gr.Markdown(f"<h1 style='text-align: center; margin-bottom: 1rem'>{title}</h1>")
gr.Markdown(
"""
<h2 style='text-align: center; margin-bottom: 1rem'>
<a href='https://arxiv.org/abs/2305.13016' target="_blank" style='text-decoration: none'>[Paper]</a>
<a href='https://arxiv.org/abs/2305.13016' target="_blank" style='text-decoration: none'>[Code]</a>
</h2>"""
)
gr.Markdown(text, elem_id="the-text")
with gr.Tab("SST-2"):
mapping = ["negative", "positive"]
init_columns = [[e["sentence"]] for e in raw_data]
init_table_result = [["**Test Input**"], *init_columns, ["**Accuracy**"]]
init_table_result = transpose(init_table_result)
init_table_result.append(["**ICL**"] + icl_result)
init_table_result = transpose(init_table_result)
state = gr.State(
{
"dataset_name": "sst2",
"exemplar_str": demos,
"raw_data": raw_data,
"step": 1,
"table_data": init_table_result,
}
)
prompt = gr.Textbox(label="Demonstrations (Prompt template formatted)", value=demos)
gr.Markdown("<h2 style='text-align: center; margin-bottom: 1rem'>πŸ‘‡ Run forward tuning once !</h2>")
step_button = gr.Button("Click here to train LLM ! Now Step: 1", variant="primary")
big_table = gr.DataFrame(
value=init_table_result,
elem_id="the-table",
datatype=["markdown"] * 50,
headers=None,
)
step_button.click(button_pressed, inputs=[state], outputs=[state, step_button, big_table])
demo.launch(server_name="0.0.0.0")