Spaces:
Runtime error
Runtime error
# coding=utf-8 | |
# Copyright 2021 The Deeplab2 Authors. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""This file contains code to build a ViP-DeepLab decoder. | |
Reference: | |
- [ViP-DeepLab: Learning Visual Perception with Depth-aware Video | |
Panoptic Segmentation](https://arxiv.org/abs/2012.05258) | |
""" | |
import tensorflow as tf | |
from deeplab2 import common | |
from deeplab2.model.decoder import panoptic_deeplab | |
layers = tf.keras.layers | |
class ViPDeepLabDecoder(layers.Layer): | |
"""A ViP-DeepLab decoder layer. | |
This layer takes low- and high-level features as input and uses a dual-ASPP | |
and dual-decoder structure to aggregate features for semantic and instance | |
segmentation. On top of the decoders, three heads are used to predict semantic | |
segmentation, instance center probabilities, and instance center regression | |
per pixel. It also has a branch to predict the next-frame instance center | |
regression. Different from the ViP-DeepLab paper which uses Cascade-ASPP, this | |
reimplementation only uses ASPP. | |
""" | |
def __init__(self, | |
decoder_options, | |
vip_deeplab_options, | |
bn_layer=tf.keras.layers.BatchNormalization): | |
"""Initializes a ViP-DeepLab decoder. | |
Args: | |
decoder_options: Decoder options as defined in config_pb2.DecoderOptions. | |
vip_deeplab_options: Model options as defined in | |
config_pb2.ModelOptions.ViPDeeplabOptions. | |
bn_layer: An optional tf.keras.layers.Layer that computes the | |
normalization (default: tf.keras.layers.BatchNormalization). | |
""" | |
super(ViPDeepLabDecoder, self).__init__(name='ViPDeepLab') | |
low_level_feature_keys = [ | |
item.feature_key for item in vip_deeplab_options.low_level | |
] | |
low_level_channels_project = [ | |
item.channels_project for item in vip_deeplab_options.low_level | |
] | |
self._semantic_decoder = panoptic_deeplab.PanopticDeepLabSingleDecoder( | |
high_level_feature_name=decoder_options.feature_key, | |
low_level_feature_names=low_level_feature_keys, | |
low_level_channels_project=low_level_channels_project, | |
aspp_output_channels=decoder_options.aspp_channels, | |
decoder_output_channels=decoder_options.decoder_channels, | |
atrous_rates=decoder_options.atrous_rates, | |
name='semantic_decoder', | |
aspp_use_only_1x1_proj_conv=decoder_options.aspp_use_only_1x1_proj_conv, | |
decoder_conv_type=decoder_options.decoder_conv_type, | |
bn_layer=bn_layer) | |
self._semantic_head = panoptic_deeplab.PanopticDeepLabSingleHead( | |
vip_deeplab_options.semantic_head.head_channels, | |
vip_deeplab_options.semantic_head.output_channels, | |
common.PRED_SEMANTIC_LOGITS_KEY, | |
name='semantic_head', | |
conv_type=vip_deeplab_options.semantic_head.head_conv_type, | |
bn_layer=bn_layer) | |
self._instance_decoder = None | |
self._instance_center_head = None | |
self._instance_regression_head = None | |
self._next_instance_decoder = None | |
self._next_instance_regression_head = None | |
if vip_deeplab_options.instance.enable: | |
if vip_deeplab_options.instance.low_level_override: | |
low_level_options = vip_deeplab_options.instance.low_level_override | |
else: | |
low_level_options = vip_deeplab_options.low_level | |
# If instance_decoder is set, use those options; otherwise reuse the | |
# architecture as defined for the semantic decoder. | |
if vip_deeplab_options.instance.HasField( | |
'instance_decoder_override'): | |
decoder_options = (vip_deeplab_options.instance | |
.instance_decoder_override) | |
low_level_feature_keys = [item.feature_key for item in low_level_options] | |
low_level_channels_project = [ | |
item.channels_project for item in low_level_options | |
] | |
self._instance_decoder = panoptic_deeplab.PanopticDeepLabSingleDecoder( | |
high_level_feature_name=decoder_options.feature_key, | |
low_level_feature_names=low_level_feature_keys, | |
low_level_channels_project=low_level_channels_project, | |
aspp_output_channels=decoder_options.aspp_channels, | |
decoder_output_channels=decoder_options.decoder_channels, | |
atrous_rates=decoder_options.atrous_rates, | |
name='instance_decoder', | |
aspp_use_only_1x1_proj_conv=( | |
decoder_options.aspp_use_only_1x1_proj_conv), | |
decoder_conv_type=decoder_options.decoder_conv_type, | |
bn_layer=bn_layer) | |
self._instance_center_head = panoptic_deeplab.PanopticDeepLabSingleHead( | |
vip_deeplab_options.instance.center_head.head_channels, | |
vip_deeplab_options.instance.center_head.output_channels, | |
common.PRED_CENTER_HEATMAP_KEY, | |
name='instance_center_head', | |
conv_type=( | |
vip_deeplab_options.instance.center_head.head_conv_type), | |
bn_layer=bn_layer) | |
self._instance_regression_head = ( | |
panoptic_deeplab.PanopticDeepLabSingleHead( | |
vip_deeplab_options.instance.regression_head.head_channels, | |
vip_deeplab_options.instance.regression_head.output_channels, | |
common.PRED_OFFSET_MAP_KEY, | |
name='instance_regression_head', | |
conv_type=( | |
vip_deeplab_options.instance.regression_head.head_conv_type), | |
bn_layer=bn_layer)) | |
if vip_deeplab_options.instance.HasField('next_regression_head'): | |
self._next_instance_decoder = ( | |
panoptic_deeplab.PanopticDeepLabSingleDecoder( | |
high_level_feature_name=decoder_options.feature_key, | |
low_level_feature_names=low_level_feature_keys, | |
low_level_channels_project=low_level_channels_project, | |
aspp_output_channels=decoder_options.aspp_channels, | |
decoder_output_channels=decoder_options.decoder_channels, | |
atrous_rates=decoder_options.atrous_rates, | |
name='next_instance_decoder', | |
aspp_use_only_1x1_proj_conv=( | |
decoder_options.aspp_use_only_1x1_proj_conv), | |
decoder_conv_type=decoder_options.decoder_conv_type, | |
bn_layer=bn_layer)) | |
self._next_instance_regression_head = ( | |
panoptic_deeplab.PanopticDeepLabSingleHead( | |
(vip_deeplab_options.instance.next_regression_head | |
.head_channels), | |
(vip_deeplab_options.instance.next_regression_head | |
.output_channels), | |
common.PRED_NEXT_OFFSET_MAP_KEY, | |
name='next_instance_regression_head', | |
conv_type=(vip_deeplab_options.instance.next_regression_head | |
.head_conv_type), | |
bn_layer=bn_layer)) | |
self._next_high_level_feature_name = decoder_options.feature_key | |
def reset_pooling_layer(self): | |
"""Resets the ASPP pooling layers to global average pooling.""" | |
self._semantic_decoder.reset_pooling_layer() | |
if self._instance_decoder is not None: | |
self._instance_decoder.reset_pooling_layer() | |
if self._next_instance_decoder is not None: | |
self._next_instance_decoder.reset_pooling_layer() | |
def set_pool_size(self, pool_size): | |
"""Sets the pooling size of the ASPP pooling layers. | |
Args: | |
pool_size: A tuple specifying the pooling size of the ASPP pooling layers. | |
""" | |
self._semantic_decoder.set_pool_size(pool_size) | |
if self._instance_decoder is not None: | |
self._instance_decoder.set_pool_size(pool_size) | |
if self._next_instance_decoder is not None: | |
self._next_instance_decoder.set_pool_size(pool_size) | |
def get_pool_size(self): | |
return self._semantic_decoder.get_pool_size() | |
def checkpoint_items(self): | |
items = { | |
common.CKPT_SEMANTIC_DECODER: | |
self._semantic_decoder, | |
common.CKPT_SEMANTIC_HEAD_WITHOUT_LAST_LAYER: | |
self._semantic_head.conv_block, | |
common.CKPT_SEMANTIC_LAST_LAYER: | |
self._semantic_head.final_conv | |
} | |
if self._instance_decoder is not None: | |
instance_items = { | |
common.CKPT_INSTANCE_DECODER: | |
self._instance_decoder, | |
common.CKPT_INSTANCE_CENTER_HEAD_WITHOUT_LAST_LAYER: | |
self._instance_center_head.conv_block, | |
common.CKPT_INSTANCE_CENTER_HEAD_LAST_LAYER: | |
self._instance_center_head.final_conv, | |
common.CKPT_INSTANCE_REGRESSION_HEAD_WITHOUT_LAST_LAYER: | |
self._instance_regression_head.conv_block, | |
common.CKPT_INSTANCE_REGRESSION_HEAD_LAST_LAYER: | |
self._instance_regression_head.final_conv, | |
} | |
items.update(instance_items) | |
if self._next_instance_decoder is not None: | |
next_instance_items = { | |
common.CKPT_NEXT_INSTANCE_DECODER: | |
self._next_instance_decoder, | |
common.CKPT_NEXT_INSTANCE_REGRESSION_HEAD_WITHOUT_LAST_LAYER: | |
self._next_instance_regression_head.conv_block, | |
common.CKPT_NEXT_INSTANCE_REGRESSION_HEAD_LAST_LAYER: | |
self._next_instance_regression_head.final_conv, | |
} | |
items.update(next_instance_items) | |
return items | |
def call(self, features, next_features, training=False): | |
"""Performs a forward pass. | |
Args: | |
features: An input dict of tf.Tensor with shape [batch, height, width, | |
channels]. Different keys should point to different features extracted | |
by the encoder, e.g. low-level or high-level features. | |
next_features: An input dict of tf.Tensor similar to features. The | |
features are computed with the next frame as input. | |
training: A boolean flag indicating whether training behavior should be | |
used (default: False). | |
Returns: | |
A dictionary containing the results of the semantic segmentation head and | |
depending on the configuration also of the instance segmentation head. | |
""" | |
semantic_features = self._semantic_decoder(features, training=training) | |
results = self._semantic_head(semantic_features, training=training) | |
if self._instance_decoder is not None: | |
instance_features = self._instance_decoder(features, training=training) | |
instance_center_predictions = self._instance_center_head( | |
instance_features, training=training) | |
instance_regression_predictions = self._instance_regression_head( | |
instance_features, training=training) | |
if results.keys() & instance_center_predictions.keys(): | |
raise ValueError('The keys of the semantic branch and the instance ' | |
'center branch overlap. Please use unique keys.') | |
results.update(instance_center_predictions) | |
if results.keys() & instance_regression_predictions.keys(): | |
raise ValueError('The keys of the semantic branch and the instance ' | |
'regression branch overlap. Please use unique keys.') | |
results.update(instance_regression_predictions) | |
if self._next_instance_decoder is not None: | |
# We update the high level features in next_features with the concated | |
# features of the high level features in both features and next_features. | |
high_level_feature_name = self._next_high_level_feature_name | |
high_level_features = features[high_level_feature_name] | |
next_high_level_features = next_features[high_level_feature_name] | |
next_high_level_features = tf.concat( | |
[high_level_features, next_high_level_features], axis=3) | |
next_features[high_level_feature_name] = next_high_level_features | |
next_regression_features = self._next_instance_decoder( | |
next_features, training=training) | |
next_regression_predictions = self._next_instance_regression_head( | |
next_regression_features, training=training) | |
if results.keys() & next_regression_predictions.keys(): | |
raise ValueError('The keys of the next regresion branch overlap.' | |
'Please use unique keys.') | |
results.update(next_regression_predictions) | |
return results | |