File size: 75,263 Bytes
9d3d366
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
"""This Streamlit app allows you to compare, from a given image, the results of different solutions:
   EasyOcr, PaddleOCR, MMOCR, Tesseract
"""

#import mim
#
#mim.install(['mmengine>=0.7.1,<1.1.0'])
#mim.install(['mmcv>=2.0.0rc4,<2.1.0'])
#mim.install(['mmdet>=3.0.rc5,<3.2.0'])
#mim.install(['mmocr'])

import streamlit as st
import plotly.express as px
import numpy as np
import math
import pandas as pd
from time import sleep

import cv2
from PIL import Image, ImageColor
import PIL
import easyocr
from paddleocr import PaddleOCR
#from mmocr.utils.ocr import MMOCR
import pytesseract
from pytesseract import Output
import os
from mycolorpy import colorlist as mcp


###################################################################################################
##   MAIN
###################################################################################################
def app():

    ###################################################################################################
    ##   FUNCTIONS
    ###################################################################################################

    @st.cache
    def convert_df(in_df):
        """Convert data frame function, used by download button

        Args:
            in_df (data frame): data frame to convert

        Returns:
            data frame: converted data frame
        """
        # IMPORTANT: Cache the conversion to prevent computation on every rerun
        return in_df.to_csv().encode('utf-8')

    ###
    def easyocr_coord_convert(in_list_coord):
        """Convert easyocr coordinates to standard format used by others functions

        Args:
            in_list_coord (list of numbers): format [x_min, x_max, y_min, y_max]

        Returns:
            list of lists: format [ [x_min, y_min], [x_max, y_min], [x_max, y_max], [x_min, y_max] ]
        """

        coord = in_list_coord
        return [[coord[0], coord[2]], [coord[1], coord[2]], [coord[1], coord[3]], [coord[0], coord[3]]]

    ###
    @st.cache(show_spinner=False)
    def initializations():
        """Initializations for the app

        Returns:
            list of strings : list of OCR solutions names
                            (['EasyOCR', 'PPOCR', 'MMOCR', 'Tesseract'])
            dict            : names and indices of the OCR solutions
                            ({'EasyOCR': 0, 'PPOCR': 1, 'MMOCR': 2, 'Tesseract': 3})
            list of dicts   : list of languages supported by each OCR solution
            list of int     : columns for recognition details results
            dict            : confidence color scale
            plotly figure   : confidence color scale figure
        """
        # the readers considered
        #out_reader_type_list = ['EasyOCR', 'PPOCR', 'MMOCR', 'Tesseract']
        #out_reader_type_dict = {'EasyOCR': 0, 'PPOCR': 1, 'MMOCR': 2, 'Tesseract': 3}
        out_reader_type_list = ['EasyOCR', 'PPOCR', 'Tesseract']
        out_reader_type_dict = {'EasyOCR': 0, 'PPOCR': 1, 'Tesseract': 2}

        # Columns for recognition details results
        out_cols_size = [2] + [2,1]*(len(out_reader_type_list)-1) # Except Tesseract

        # Dicts of laguages supported by each reader
        out_dict_lang_easyocr = {'Abaza': 'abq', 'Adyghe': 'ady', 'Afrikaans': 'af', 'Angika': 'ang', \
        'Arabic': 'ar', 'Assamese': 'as', 'Avar': 'ava', 'Azerbaijani': 'az', 'Belarusian': 'be', \
        'Bulgarian': 'bg', 'Bihari': 'bh', 'Bhojpuri': 'bho', 'Bengali': 'bn', 'Bosnian': 'bs', \
        'Simplified Chinese': 'ch_sim', 'Traditional Chinese': 'ch_tra', 'Chechen': 'che', \
        'Czech': 'cs', 'Welsh': 'cy', 'Danish': 'da', 'Dargwa': 'dar', 'German': 'de', \
        'English': 'en', 'Spanish': 'es', 'Estonian': 'et', 'Persian (Farsi)': 'fa', 'French': 'fr', \
        'Irish': 'ga', 'Goan Konkani': 'gom', 'Hindi': 'hi', 'Croatian': 'hr', 'Hungarian': 'hu', \
        'Indonesian': 'id', 'Ingush': 'inh', 'Icelandic': 'is', 'Italian': 'it', 'Japanese': 'ja', \
        'Kabardian': 'kbd', 'Kannada': 'kn', 'Korean': 'ko', 'Kurdish': 'ku', 'Latin': 'la', \
        'Lak': 'lbe', 'Lezghian': 'lez', 'Lithuanian': 'lt', 'Latvian': 'lv', 'Magahi': 'mah', \
        'Maithili': 'mai', 'Maori': 'mi', 'Mongolian': 'mn', 'Marathi': 'mr', 'Malay': 'ms', \
        'Maltese': 'mt', 'Nepali': 'ne', 'Newari': 'new', 'Dutch': 'nl', 'Norwegian': 'no', \
        'Occitan': 'oc', 'Pali': 'pi', 'Polish': 'pl', 'Portuguese': 'pt', 'Romanian': 'ro', \
        'Russian': 'ru', 'Serbian (cyrillic)': 'rs_cyrillic', 'Serbian (latin)': 'rs_latin', \
        'Nagpuri': 'sck', 'Slovak': 'sk', 'Slovenian': 'sl', 'Albanian': 'sq', 'Swedish': 'sv', \
        'Swahili': 'sw', 'Tamil': 'ta', 'Tabassaran': 'tab', 'Telugu': 'te', 'Thai': 'th', \
        'Tajik': 'tjk', 'Tagalog': 'tl', 'Turkish': 'tr', 'Uyghur': 'ug', 'Ukranian': 'uk', \
        'Urdu': 'ur', 'Uzbek': 'uz', 'Vietnamese': 'vi'}

        out_dict_lang_ppocr = {'Abaza': 'abq', 'Adyghe': 'ady', 'Afrikaans': 'af', 'Albanian': 'sq', \
        'Angika': 'ang', 'Arabic': 'ar', 'Avar': 'ava', 'Azerbaijani': 'az', 'Belarusian': 'be', \
        'Bhojpuri': 'bho','Bihari': 'bh','Bosnian': 'bs','Bulgarian': 'bg','Chinese & English': 'ch', \
        'Chinese Traditional': 'chinese_cht', 'Croatian': 'hr', 'Czech': 'cs', 'Danish': 'da', \
        'Dargwa': 'dar', 'Dutch': 'nl', 'English': 'en', 'Estonian': 'et', 'French': 'fr', \
        'German': 'german','Goan Konkani': 'gom','Hindi': 'hi','Hungarian': 'hu','Icelandic': 'is', \
        'Indonesian': 'id', 'Ingush': 'inh', 'Irish': 'ga', 'Italian': 'it', 'Japan': 'japan', \
        'Kabardian': 'kbd', 'Korean': 'korean', 'Kurdish': 'ku', 'Lak': 'lbe', 'Latvian': 'lv', \
        'Lezghian': 'lez', 'Lithuanian': 'lt', 'Magahi': 'mah', 'Maithili': 'mai', 'Malay': 'ms', \
        'Maltese': 'mt', 'Maori': 'mi', 'Marathi': 'mr', 'Mongolian': 'mn', 'Nagpur': 'sck', \
        'Nepali': 'ne', 'Newari': 'new', 'Norwegian': 'no', 'Occitan': 'oc', 'Persian': 'fa', \
        'Polish': 'pl', 'Portuguese': 'pt', 'Romanian': 'ro', 'Russia': 'ru', 'Saudi Arabia': 'sa', \
        'Serbian(cyrillic)': 'rs_cyrillic', 'Serbian(latin)': 'rs_latin', 'Slovak': 'sk', \
        'Slovenian': 'sl', 'Spanish': 'es', 'Swahili': 'sw', 'Swedish': 'sv', 'Tabassaran': 'tab', \
        'Tagalog': 'tl', 'Tamil': 'ta', 'Telugu': 'te', 'Turkish': 'tr', 'Ukranian': 'uk', \
        'Urdu': 'ur', 'Uyghur': 'ug', 'Uzbek': 'uz', 'Vietnamese': 'vi', 'Welsh': 'cy'}

        #out_dict_lang_mmocr = {'English & Chinese': 'en'}

        out_dict_lang_tesseract = {'Afrikaans': 'afr','Albanian': 'sqi','Amharic': 'amh', \
        'Arabic': 'ara', 'Armenian': 'hye','Assamese': 'asm','Azerbaijani - Cyrilic': 'aze_cyrl', \
        'Azerbaijani': 'aze', 'Basque': 'eus','Belarusian': 'bel','Bengali': 'ben','Bosnian': 'bos', \
        'Breton': 'bre', 'Bulgarian': 'bul','Burmese': 'mya','Catalan; Valencian': 'cat', \
        'Cebuano': 'ceb', 'Central Khmer': 'khm','Cherokee': 'chr','Chinese - Simplified': 'chi_sim', \
        'Chinese - Traditional': 'chi_tra','Corsican': 'cos','Croatian': 'hrv','Czech': 'ces', \
        'Danish':'dan','Dutch; Flemish':'nld','Dzongkha':'dzo','English, Middle (1100-1500)':'enm', \
        'English': 'eng','Esperanto': 'epo','Estonian': 'est','Faroese': 'fao', \
        'Filipino (old - Tagalog)': 'fil','Finnish': 'fin','French, Middle (ca.1400-1600)': 'frm', \
        'French': 'fra','Galician': 'glg','Georgian - Old': 'kat_old','Georgian': 'kat', \
        'German - Fraktur': 'frk','German': 'deu','Greek, Modern (1453-)': 'ell','Gujarati': 'guj', \
        'Haitian; Haitian Creole': 'hat','Hebrew': 'heb','Hindi': 'hin','Hungarian': 'hun', \
        'Icelandic': 'isl','Indonesian': 'ind','Inuktitut': 'iku','Irish': 'gle', \
        'Italian - Old': 'ita_old','Italian': 'ita','Japanese': 'jpn','Javanese': 'jav', \
        'Kannada': 'kan','Kazakh': 'kaz','Kirghiz; Kyrgyz': 'kir','Korean (vertical)': 'kor_vert', \
        'Korean': 'kor','Kurdish (Arabic Script)': 'kur_ara','Lao': 'lao','Latin': 'lat', \
        'Latvian':'lav','Lithuanian':'lit','Luxembourgish':'ltz','Macedonian':'mkd','Malay':'msa', \
        'Malayalam': 'mal','Maltese': 'mlt','Maori': 'mri','Marathi': 'mar','Mongolian': 'mon', \
        'Nepali': 'nep','Norwegian': 'nor','Occitan (post 1500)': 'oci', \
        'Orientation and script detection module':'osd','Oriya':'ori','Panjabi; Punjabi':'pan', \
        'Persian':'fas','Polish':'pol','Portuguese':'por','Pushto; Pashto':'pus','Quechua':'que', \
        'Romanian; Moldavian; Moldovan': 'ron','Russian': 'rus','Sanskrit': 'san', \
        'Scottish Gaelic': 'gla','Serbian - Latin': 'srp_latn','Serbian': 'srp','Sindhi': 'snd', \
        'Sinhala; Sinhalese': 'sin','Slovak': 'slk','Slovenian': 'slv', \
        'Spanish; Castilian - Old': 'spa_old','Spanish; Castilian': 'spa','Sundanese': 'sun', \
        'Swahili': 'swa','Swedish': 'swe','Syriac': 'syr','Tajik': 'tgk','Tamil': 'tam', \
        'Tatar':'tat','Telugu':'tel','Thai':'tha','Tibetan':'bod','Tigrinya':'tir','Tonga':'ton', \
        'Turkish': 'tur','Uighur; Uyghur': 'uig','Ukrainian': 'ukr','Urdu': 'urd', \
        'Uzbek - Cyrilic': 'uzb_cyrl','Uzbek': 'uzb','Vietnamese': 'vie','Welsh': 'cym', \
        'Western Frisian': 'fry','Yiddish': 'yid','Yoruba': 'yor'}

        out_list_dict_lang = [out_dict_lang_easyocr, out_dict_lang_ppocr, \
                              #out_dict_lang_mmocr, \
                            out_dict_lang_tesseract]

        # Initialization of detection form
        if 'columns_size' not in st.session_state:
            st.session_state.columns_size = [2] + [1 for x in out_reader_type_list[1:]]
        if 'column_width' not in st.session_state:
            st.session_state.column_width = [400] + [300 for x in out_reader_type_list[1:]]
        if 'columns_color' not in st.session_state:
            st.session_state.columns_color = ["rgb(228,26,28)"] + \
                                            ["rgb(79, 43, 255)" for x in out_reader_type_list[1:]]
        if 'list_coordinates' not in st.session_state:
            st.session_state.list_coordinates = []

        # Confidence color scale
        out_list_confid = list(np.arange(0,101,1))
        out_list_grad = mcp.gen_color_normalized(cmap="Greens",data_arr=np.array(out_list_confid))
        out_dict_back_colors = {out_list_confid[i]: out_list_grad[i] \
                                                    for i in range(len(out_list_confid))}

        list_y = [1 for i in out_list_confid]
        df_confid = pd.DataFrame({'% confidence scale': out_list_confid, 'y': list_y})

        out_fig = px.scatter(df_confid, x='% confidence scale', y='y', \
                    hover_data={'% confidence scale': True, 'y': False},
                    color=out_dict_back_colors.values(), range_y=[0.9,1.1], range_x=[0,100],
                    color_discrete_map="identity",height=50,symbol='y',symbol_sequence=['square'])
        out_fig.update_xaxes(showticklabels=False)
        out_fig.update_yaxes(showticklabels=False, range=[0.1, 1.1], visible=False)
        out_fig.update_traces(marker_size=50)
        out_fig.update_layout(paper_bgcolor="white", margin=dict(b=0,r=0,t=0,l=0), xaxis_side="top", \
                            showlegend=False)

        return out_reader_type_list, out_reader_type_dict, out_list_dict_lang, \
            out_cols_size, out_dict_back_colors, out_fig

    ###
    @st.experimental_memo(show_spinner=False)
    def init_easyocr(in_params):
        """Initialization of easyOCR reader

        Args:
            in_params (list): list with the language

        Returns:
            easyocr reader: the easyocr reader instance
        """
        out_ocr = easyocr.Reader(in_params)
        return out_ocr

    ###
    @st.cache(show_spinner=False)
    def init_ppocr(in_params):
        """Initialization of PPOCR reader

        Args:
            in_params (dict): dict with parameters

        Returns:
            ppocr reader: the ppocr reader instance
        """
        out_ocr = PaddleOCR(lang=in_params[0], **in_params[1])
        return out_ocr

    ###
    #@st.experimental_memo(show_spinner=False)
    #def init_mmocr(in_params):
    #    """Initialization of MMOCR reader
#
    #    Args:
    #        in_params (dict): dict with parameters
#
    #    Returns:
    #        mmocr reader: the ppocr reader instance
    #    """
    #    out_ocr = MMOCR(recog=None, **in_params[1])
    #    return out_ocr

    ###
    def init_readers(in_list_params):
        """Initialization of the readers, and return them as list

        Args:
            in_list_params (list): list of dicts of parameters for each reader

        Returns:
            list: list of the reader's instances
        """
        # Instantiations of the readers :
        # - EasyOCR
        with st.spinner("EasyOCR reader initialization in progress ..."):
            reader_easyocr = init_easyocr([in_list_params[0][0]])

        # - PPOCR
        # Paddleocr
        with st.spinner("PPOCR reader initialization in progress ..."):
            reader_ppocr = init_ppocr(in_list_params[1])

        # - MMOCR
        #with st.spinner("MMOCR reader initialization in progress ..."):
        #    reader_mmocr = init_mmocr(in_list_params[2])

        out_list_readers = [reader_easyocr, reader_ppocr] #, reader_mmocr]

        return out_list_readers

    ###
    def load_image(in_image_file):
        """Load input file and open it

        Args:
            in_image_file (string or Streamlit UploadedFile): image to consider

        Returns:
            string      : locally saved image path (img.)
            PIL.Image   : input file opened with Pillow
            matrix      : input file opened with Opencv
        """

        #if isinstance(in_image_file, str):
        #    out_image_path = "img."+in_image_file.split('.')[-1]
        #else:
        #    out_image_path = "img."+in_image_file.name.split('.')[-1]

        if isinstance(in_image_file, str):
            out_image_path = "tmp_"+in_image_file
        else:
            out_image_path = "tmp_"+in_image_file.name

        img = Image.open(in_image_file)
        img_saved = img.save(out_image_path)

        # Read image
        out_image_orig = Image.open(out_image_path)
        out_image_cv2 = cv2.cvtColor(cv2.imread(out_image_path), cv2.COLOR_BGR2RGB)

        return out_image_path, out_image_orig, out_image_cv2

    ###
    @st.experimental_memo(show_spinner=False)
    def easyocr_detect(_in_reader, in_image_path, in_params):
        """Detection with EasyOCR

        Args:
            _in_reader (EasyOCR reader) : the previously initialized instance
            in_image_path (string  )    : locally saved image path
            in_params (list)            : list with the parameters for detection

        Returns:
            list        : list of the boxes coordinates
            exception on error, string 'OK' otherwise
        """
        try:
            dict_param = in_params[1]
            detection_result = _in_reader.detect(in_image_path,
                                                #width_ths=0.7,
                                                #mag_ratio=1.5
                                                **dict_param
                                                )
            easyocr_coordinates = detection_result[0][0]

            # The format of the coordinate is as follows: [x_min, x_max, y_min, y_max]
            # Format boxes coordinates for draw
            out_easyocr_boxes_coordinates = list(map(easyocr_coord_convert, easyocr_coordinates))
            out_status = 'OK'
        except Exception as e:
            out_easyocr_boxes_coordinates = []
            out_status = e

        return out_easyocr_boxes_coordinates, out_status

    ###
    @st.experimental_memo(show_spinner=False)
    def ppocr_detect(_in_reader, in_image_path):
        """Detection with PPOCR

        Args:
            _in_reader (PPOCR reader) : the previously initialized instance
            in_image_path (string  )  : locally saved image path

        Returns:
            list        : list of the boxes coordinates
            exception on error, string 'OK' otherwise
        """
        # PPOCR detection method
        try:
            out_ppocr_boxes_coordinates = _in_reader.ocr(in_image_path, rec=False)
            out_status = 'OK'
        except Exception as e:
            out_ppocr_boxes_coordinates = []
            out_status = e

        return out_ppocr_boxes_coordinates, out_status

    ###
    #@st.experimental_memo(show_spinner=False)
    #def mmocr_detect(_in_reader, in_image_path):
    #    """Detection with MMOCR
#
    #    Args:
    #        _in_reader (EasyORC reader) : the previously initialized instance
    #        in_image_path (string)      : locally saved image path
    #        in_params (list)            : list with the parameters
#
    #    Returns:
    #        list        : list of the boxes coordinates
    #        exception on error, string 'OK' otherwise
    #    """
    #    # MMOCR detection method
    #    out_mmocr_boxes_coordinates = []
    #    try:
    #        det_result = _in_reader.readtext(in_image_path, details=True)
    #        bboxes_list = [res['boundary_result'] for res in det_result]
    #        for bboxes in bboxes_list:
    #            for bbox in bboxes:
    #                if len(bbox) > 9:
    #                    min_x = min(bbox[0:-1:2])
    #                    min_y = min(bbox[1:-1:2])
    #                    max_x = max(bbox[0:-1:2])
    #                    max_y = max(bbox[1:-1:2])
    #                    #box = [min_x, min_y, max_x, min_y, max_x, max_y, min_x, max_y]
    #                else:
    #                    min_x = min(bbox[0:-1:2])
    #                    min_y = min(bbox[1::2])
    #                    max_x = max(bbox[0:-1:2])
    #                    max_y = max(bbox[1::2])
    #                box4 = [ [min_x, min_y], [max_x, min_y], [max_x, max_y], [min_x, max_y] ]
    #                out_mmocr_boxes_coordinates.append(box4)
    #        out_status = 'OK'
    #    except Exception as e:
    #        out_status = e
#
    #    return out_mmocr_boxes_coordinates, out_status

    ###
    def cropped_1box(in_box, in_img):
        """Construction of an cropped image corresponding to an area of the initial image

        Args:
            in_box (list)   : box with coordinates
            in_img (matrix) : image

        Returns:
            matrix : cropped image
        """
        box_ar = np.array(in_box).astype(np.int64)
        x_min = box_ar[:, 0].min()
        x_max = box_ar[:, 0].max()
        y_min = box_ar[:, 1].min()
        y_max = box_ar[:, 1].max()
        out_cropped = in_img[y_min:y_max, x_min:x_max]

        return out_cropped

    ###
    @st.experimental_memo(show_spinner=False)
    def tesserocr_detect(in_image_path, _in_img, in_params):
        """Detection with Tesseract

        Args:
            in_image_path (string) : locally saved image path
            _in_img (PIL.Image)    : image to consider
            in_params (list)       : list with the parameters for detection

        Returns:
            list        : list of the boxes coordinates
            exception on error, string 'OK' otherwise
        """
        try:
            dict_param = in_params[1]
            df_res = pytesseract.image_to_data(_in_img, **dict_param, output_type=Output.DATAFRAME)

            df_res['box'] = df_res.apply(lambda d: [[d['left'], d['top']], \
                                                    [d['left'] + d['width'], d['top']], \
                                                    [d['left'] + d['width'], d['top'] + d['height']], \
                                                    [d['left'], d['top'] + d['height']], \
                                                ], axis=1)
            out_tesserocr_boxes_coordinates = df_res[df_res.word_num > 0]['box'].to_list()
            out_status = 'OK'
        except Exception as e:
            out_tesserocr_boxes_coordinates = []
            out_status = e

        return out_tesserocr_boxes_coordinates, out_status

    ###
    @st.experimental_memo(show_spinner=False)
    def process_detect(in_image_path, _in_list_images, _in_list_readers, in_list_params, in_color):
        """Detection process for each OCR solution

        Args:
            in_image_path (string)  : locally saved image path
            _in_list_images (list)  : list of original image
            _in_list_readers (list) : list with previously initialized reader's instances
            in_list_params (list)   : list with dict parameters for each OCR solution
            in_color (tuple)        : color for boxes around text

        Returns:
            list: list of detection results images
            list: list of boxes coordinates
        """
        ## ------- EasyOCR Text detection
        with st.spinner('EasyOCR Text detection in progress ...'):
            easyocr_boxes_coordinates,easyocr_status = easyocr_detect(_in_list_readers[0], \
                                                                    in_image_path, in_list_params[0])
            # Visualization
            if easyocr_boxes_coordinates:
                easyocr_image_detect = draw_detected(_in_list_images[0], easyocr_boxes_coordinates, \
                                                    in_color, 'None', 3)
            else:
                easyocr_boxes_coordinates = easyocr_status
        ##

        ## ------- PPOCR Text detection
        with st.spinner('PPOCR Text detection in progress ...'):
            list_ppocr_boxes_coordinates, ppocr_status = ppocr_detect(_in_list_readers[1], in_image_path)
            ppocr_boxes_coordinates = list_ppocr_boxes_coordinates[0]
            # Visualization
            if ppocr_boxes_coordinates:
                ppocr_image_detect = draw_detected(_in_list_images[0], ppocr_boxes_coordinates, \
                                                in_color, 'None', 3)
            else:
                ppocr_image_detect = ppocr_status
        ##

        ## ------- MMOCR Text detection
        #with st.spinner('MMOCR Text detection in progress ...'):
        #    mmocr_boxes_coordinates, mmocr_status = mmocr_detect(_in_list_readers[2], in_image_path)
        #    # Visualization
        #    if mmocr_boxes_coordinates:
        #        mmocr_image_detect = draw_detected(_in_list_images[0], mmocr_boxes_coordinates, \
        #                                        in_color, 'None', 3)
        #    else:
        #        mmocr_image_detect = mmocr_status
        ##

        ## ------- Tesseract Text detection
        with st.spinner('Tesseract Text detection in progress ...'):
            tesserocr_boxes_coordinates, tesserocr_status = tesserocr_detect(in_image_path, \
                                                                            _in_list_images[0], \
                                                                            in_list_params[2]) #in_list_params[3]
            # Visualization
            if tesserocr_status == 'OK':
                tesserocr_image_detect = draw_detected(_in_list_images[0],tesserocr_boxes_coordinates,\
                                                    in_color, 'None', 3)
            else:
                tesserocr_image_detect = tesserocr_status
        ##
        #
        out_list_images = _in_list_images + [easyocr_image_detect, ppocr_image_detect, \
                                           # mmocr_image_detect, \
                                                tesserocr_image_detect]
        out_list_coordinates = [easyocr_boxes_coordinates, ppocr_boxes_coordinates, \
                              #  mmocr_boxes_coordinates, \
                                    tesserocr_boxes_coordinates]
        #

        return out_list_images, out_list_coordinates

    ###
    def draw_detected(in_image, in_boxes_coordinates, in_color, posit='None', in_thickness=4):
        """Draw boxes around detected text

        Args:
            in_image (PIL.Image)        : original image
            in_boxes_coordinates (list) : boxes coordinates, from top to bottom and from left to right
                                        [ [ [x_min, y_min], [x_max, y_min], [x_max, y_max], [x_min, y_max] ],
                                            [ ...                                                            ]
                                        ]
            in_color (tuple)            : color for boxes around text
            posit (str, optional)       : position for text. Defaults to 'None'.
            in_thickness (int, optional): thickness of the box. Defaults to 4.

        Returns:
            PIL.Image : original image with detected areas
        """
        work_img = in_image.copy()
        if in_boxes_coordinates:
            font = cv2.FONT_HERSHEY_SIMPLEX
            for ind_box, box in enumerate(in_boxes_coordinates):
                box = np.reshape(np.array(box), [-1, 1, 2]).astype(np.int64)
                work_img = cv2.polylines(np.array(work_img), [box], True, in_color, in_thickness)
                if posit != 'None':
                    if posit == 'top_left':
                        pos = tuple(box[0][0])
                    elif posit == 'top_right':
                        pos = tuple(box[1][0])
                    work_img = cv2.putText(work_img, str(ind_box+1), pos, font, 5.5, color, \
                                        in_thickness,cv2.LINE_AA)

            out_image_drawn = Image.fromarray(work_img)
        else:
            out_image_drawn = work_img

        return out_image_drawn

    ###
    @st.experimental_memo(show_spinner=False)
    def get_cropped(in_boxes_coordinates, in_image_cv):
        """Construct list of cropped images corresponding of the input boxes coordinates list

        Args:
            in_boxes_coordinates (list) : list of boxes coordinates
            in_image_cv (matrix)        : original image

        Returns:
            list : list with cropped images
        """
        out_list_images = []
        for box in in_boxes_coordinates:
            cropped = cropped_1box(box, in_image_cv)
            out_list_images.append(cropped)
        return out_list_images

    ###
    def process_recog(in_list_readers, in_image_cv, in_boxes_coordinates, in_list_dict_params):
        """Recognition process for each OCR solution

        Args:
            in_list_readers (list)      : list with previously initialized reader's instances
            in_image_cv (matrix)        : original image
            in_boxes_coordinates (list) : list of boxes coordinates
            in_list_dict_params (list)  : list with dict parameters for each OCR solution

        Returns:
            data frame  : results for each OCR solution, except Tesseract
            data frame  : results for Tesseract
            list        : status for each recognition (exception or 'OK')
        """
        out_df_results = pd.DataFrame([])

        list_text_easyocr = []
        list_confidence_easyocr = []
        list_text_ppocr = []
        list_confidence_ppocr = []
        #list_text_mmocr = []
        #list_confidence_mmocr = []

        # Create cropped images from detection
        list_cropped_images = get_cropped(in_boxes_coordinates, in_image_cv)

        # Recognize with EasyOCR
        with st.spinner('EasyOCR Text recognition in progress ...'):
            list_text_easyocr, list_confidence_easyocr, status_easyocr = \
                easyocr_recog(list_cropped_images, in_list_readers[0], in_list_dict_params[0])
        ##

        # Recognize with PPOCR
        with st.spinner('PPOCR Text recognition in progress ...'):
            list_text_ppocr, list_confidence_ppocr, status_ppocr = \
                ppocr_recog(list_cropped_images, in_list_dict_params[1])
        ##

        # Recognize with MMOCR
        #with st.spinner('MMOCR Text recognition in progress ...'):
        #    list_text_mmocr, list_confidence_mmocr, status_mmocr = \
        #        mmocr_recog(list_cropped_images, in_list_dict_params[2])
        ##

        # Recognize with Tesseract
        with st.spinner('Tesseract Text recognition in progress ...'):
            out_df_results_tesseract, status_tesseract = \
            tesserocr_recog(in_image_cv, in_list_dict_params[2], len(list_cropped_images))
            #tesserocr_recog(in_image_cv, in_list_dict_params[3], len(list_cropped_images))
        ##

        # Create results data frame
        out_df_results = pd.DataFrame({'cropped_image': list_cropped_images,
                                    'text_easyocr': list_text_easyocr,
                                    'confidence_easyocr': list_confidence_easyocr,
                                    'text_ppocr': list_text_ppocr,
                                    'confidence_ppocr': list_confidence_ppocr,
                                    #'text_mmocr': list_text_mmocr,
                                    #'confidence_mmocr': list_confidence_mmocr
                                    }
                                    )

        #out_list_reco_status = [status_easyocr, status_ppocr, status_mmocr, status_tesseract]
        out_list_reco_status = [status_easyocr, status_ppocr, status_tesseract]

        return out_df_results, out_df_results_tesseract, out_list_reco_status

    ###
    @st.experimental_memo(suppress_st_warning=True, show_spinner=False)
    def easyocr_recog(in_list_images, _in_reader_easyocr, in_params):
        """Recognition with EasyOCR

        Args:
            in_list_images (list)               : list of cropped images
            _in_reader_easyocr (EasyOCR reader) : the previously initialized instance
            in_params (dict)                    : parameters for recognition

        Returns:
            list : list of recognized text
            list : list of recognition confidence
            string/Exception : recognition status
        """
        progress_bar = st.progress(0)
        out_list_text_easyocr = []
        out_list_confidence_easyocr = []
        ## ------- EasyOCR Text recognition
        try:
            step = 0*len(in_list_images) # first recognition process
            #nb_steps = 4 * len(in_list_images)
            nb_steps = 3 * len(in_list_images)
            for ind_img, cropped in enumerate(in_list_images):
                result = _in_reader_easyocr.recognize(cropped, **in_params)
                try:
                    out_list_text_easyocr.append(result[0][1])
                    out_list_confidence_easyocr.append(np.round(100*result[0][2], 1))
                except:
                    out_list_text_easyocr.append('Not recognize')
                    out_list_confidence_easyocr.append(100.)
                progress_bar.progress((step+ind_img+1)/nb_steps)
            out_status = 'OK'
        except Exception as e:
            out_status = e
        progress_bar.empty()

        return out_list_text_easyocr, out_list_confidence_easyocr, out_status

    ###
    @st.experimental_memo(suppress_st_warning=True, show_spinner=False)
    def ppocr_recog(in_list_images, in_params):
        """Recognition with PPOCR

        Args:
            in_list_images (list) : list of cropped images
            in_params (dict)      : parameters for recognition

        Returns:
            list : list of recognized text
            list : list of recognition confidence
            string/Exception : recognition status
        """
        ## ------- PPOCR Text recognition
        out_list_text_ppocr = []
        out_list_confidence_ppocr = []
        try:
            reader_ppocr = PaddleOCR(**in_params)
            step = 1*len(in_list_images) # second recognition process
            #nb_steps = 4 * len(in_list_images)
            nb_steps = 3 * len(in_list_images)
            progress_bar = st.progress(step/nb_steps)

            for ind_img, cropped in enumerate(in_list_images):
                list_result = reader_ppocr.ocr(cropped, det=False, cls=False)
                result = list_result[0]
                try:
                    out_list_text_ppocr.append(result[0][0])
                    out_list_confidence_ppocr.append(np.round(100*result[0][1], 1))
                except:
                    out_list_text_ppocr.append('Not recognize')
                    out_list_confidence_ppocr.append(100.)
                progress_bar.progress((step+ind_img+1)/nb_steps)
            out_status = 'OK'
        except Exception as e:
            out_status = e
        progress_bar.empty()

        return out_list_text_ppocr, out_list_confidence_ppocr, out_status

    ###
    #@st.experimental_memo(suppress_st_warning=True, show_spinner=False)
    #def mmocr_recog(in_list_images, in_params):
    #    """Recognition with MMOCR
#
    #    Args:
    #        in_list_images (list) : list of cropped images
    #        in_params (dict)      : parameters for recognition
#
    #    Returns:
    #        list : list of recognized text
    #        list : list of recognition confidence
    #        string/Exception : recognition status
    #    """
    #    ## ------- MMOCR Text recognition
    #    out_list_text_mmocr = []
    #    out_list_confidence_mmocr = []
    #    try:
    #        reader_mmocr = MMOCR(det=None, **in_params)
    #        step = 2*len(in_list_images) # third recognition process
    #        nb_steps = 4 * len(in_list_images)
    #        progress_bar = st.progress(step/nb_steps)
#
    #        for ind_img, cropped in enumerate(in_list_images):
    #            result = reader_mmocr.readtext(cropped, details=True)
    #            try:
    #                out_list_text_mmocr.append(result[0]['text'])
    #                out_list_confidence_mmocr.append(np.round(100* \
    #                                                        (np.array(result[0]['score']).mean()), 1))
    #            except:
    #                out_list_text_mmocr.append('Not recognize')
    #                out_list_confidence_mmocr.append(100.)
    #            progress_bar.progress((step+ind_img+1)/nb_steps)
    #        out_status = 'OK'
    #    except Exception as e:
    #        out_status = e
    #    progress_bar.empty()
#
    #    return out_list_text_mmocr, out_list_confidence_mmocr, out_status
#
    ###
    @st.experimental_memo(suppress_st_warning=True, show_spinner=False)
    def tesserocr_recog(in_img, in_params, in_nb_images):
        """Recognition with Tesseract

        Args:
            in_image_cv (matrix) : original image
            in_params (dict)     : parameters for recognition
            in_nb_images         : nb cropped images (used for progress bar)

        Returns:
            Pandas data frame : recognition results
            string/Exception  : recognition status
        """
        ## ------- Tesseract Text recognition
        step = 3*in_nb_images # fourth recognition process
        #nb_steps = 4 * in_nb_images
        nb_steps = 3 * in_nb_images
        progress_bar = st.progress(step/nb_steps)

        try:
            out_df_result = pytesseract.image_to_data(in_img, **in_params,output_type=Output.DATAFRAME)

            out_df_result['box'] = out_df_result.apply(lambda d: [[d['left'], d['top']], \
                                                        [d['left'] + d['width'], d['top']], \
                                                        [d['left']+d['width'], d['top']+d['height']], \
                                                        [d['left'], d['top'] + d['height']], \
                                                        ], axis=1)
            out_df_result['cropped'] = out_df_result['box'].apply(lambda b: cropped_1box(b, in_img))
            out_df_result = out_df_result[(out_df_result.word_num > 0) & (out_df_result.text != ' ')] \
                                .reset_index(drop=True)
            out_status = 'OK'
        except Exception as e:
            out_df_result = pd.DataFrame([])
            out_status = e

        progress_bar.progress(1.)

        return out_df_result, out_status

    ###
    def draw_reco_images(in_image, in_boxes_coordinates, in_list_texts, in_list_confid, \
                        in_dict_back_colors, in_df_results_tesseract, in_reader_type_list, \
                        in_font_scale=1, in_conf_threshold=65):
        """Draw recognized text on original image, for each OCR solution used

        Args:
            in_image (matrix)        : original image
            in_boxes_coordinates (list) : list of boxes coordinates
            in_list_texts (list): list of recognized text for each recognizer (except Tesseract)
            in_list_confid (list): list of recognition confidence for each recognizer (except Tesseract)
            in_df_results_tesseract (Pandas data frame): Tesseract recognition results
            in_font_scale (int, optional): text font scale. Defaults to 3.

        Returns:
            shows the results container
        """
        img = in_image.copy()
        nb_readers = len(in_reader_type_list)
        list_reco_images = [img.copy() for i in range(nb_readers)]

        for num, box_ in enumerate(in_boxes_coordinates):
            box = np.array(box_).astype(np.int64)

            # For each box : draw the results of each recognizer
            for ind_r in range(nb_readers-1):
                confid = np.round(in_list_confid[ind_r][num], 0)
                rgb_color = ImageColor.getcolor(in_dict_back_colors[confid], "RGB")
                if confid < in_conf_threshold:
                    text_color = (0, 0, 0)
                else:
                    text_color = (255, 255, 255)

                list_reco_images[ind_r] = cv2.rectangle(list_reco_images[ind_r], \
                                                    (box[0][0], box[0][1]), \
                                                    (box[2][0], box[2][1]), rgb_color, -1)
                list_reco_images[ind_r] = cv2.putText(list_reco_images[ind_r], \
                                                    in_list_texts[ind_r][num], \
                                            (box[0][0],int(np.round((box[0][1]+box[2][1])/2,0))), \
                                            cv2.FONT_HERSHEY_DUPLEX, in_font_scale, text_color, 2)

        # Add Tesseract process
        if not in_df_results_tesseract.empty:
            ind_tessocr = nb_readers-1
            for num, box_ in enumerate(in_df_results_tesseract['box'].to_list()):
                box = np.array(box_).astype(np.int64)
                confid = np.round(in_df_results_tesseract.iloc[num]['conf'], 0)
                rgb_color = ImageColor.getcolor(in_dict_back_colors[confid], "RGB")
                if confid < in_conf_threshold:
                    text_color = (0, 0, 0)
                else:
                    text_color = (255, 255, 255)

                list_reco_images[ind_tessocr] = \
                    cv2.rectangle(list_reco_images[ind_tessocr], (box[0][0], box[0][1]), \
                                (box[2][0], box[2][1]), rgb_color, -1)
                try:
                    list_reco_images[ind_tessocr] = \
                        cv2.putText(list_reco_images[ind_tessocr], \
                                    in_df_results_tesseract.iloc[num]['text'], \
                                    (box[0][0],int(np.round((box[0][1]+box[2][1])/2,0))), \
                                    cv2.FONT_HERSHEY_DUPLEX, in_font_scale, text_color, 2)

                except:

                    pass

        with show_reco.container():
            # Draw the results, 2 images per line
            reco_lines = math.ceil(len(in_reader_type_list) / 2)
            column_width = 400
            for ind_lig in range(0, reco_lines+1, 2):
                cols = st.columns(2)
                for ind_col in range(2):
                    ind = ind_lig + ind_col
                    if ind < len(in_reader_type_list):
                        if in_reader_type_list[ind] == 'Tesseract':
                            column_title = '<p style="font-size: 20px;color:rgb(228,26,28); \
                                            ">Recognition with ' + in_reader_type_list[ind] + \
                                            '<sp style="font-size: 17px"> (with its own detector) \
                                            </sp></p>'
                        else:
                            column_title = '<p style="font-size: 20px;color:rgb(228,26,28); \
                                            ">Recognition with ' + \
                                            in_reader_type_list[ind]+ '</p>'
                        cols[ind_col].markdown(column_title, unsafe_allow_html=True)
                        if st.session_state.list_reco_status[ind] == 'OK':
                            cols[ind_col].image(list_reco_images[ind], \
                                                width=column_width, use_column_width=True)
                        else:
                            cols[ind_col].write(list_reco_status[ind], \
                                                use_column_width=True)

            st.markdown(' πŸ’‘ Bad font size? you can adjust it below and refresh:')

    ###
    def highlight():
        """ Highlight choosen detector results
        """
        with show_detect.container():
            columns_size = [1 for x in reader_type_list]
            column_width  = [300 for x in reader_type_list]
            columns_color = ["rgb(12, 5, 105)" for x in reader_type_list]
            columns_size[reader_type_dict[st.session_state.detect_reader]] = 2
            column_width[reader_type_dict[st.session_state.detect_reader]] = 400
            columns_color[reader_type_dict[st.session_state.detect_reader]] = "rgb(228,26,28)"
            columns = st.columns(columns_size, ) #gap='medium')

            for ind_col, col in enumerate(columns):
                column_title = '<p style="font-size: 20px;color:'+columns_color[ind_col] + \
                                ';">Detection with ' + reader_type_list[ind_col]+ '</p>'
                col.markdown(column_title, unsafe_allow_html=True)
                if isinstance(list_images[ind_col+2], PIL.Image.Image):
                    col.image(list_images[ind_col+2], width=column_width[ind_col], \
                              use_column_width=True)
                else:
                    col.write(list_images[ind_col+2], use_column_width=True)
            st.session_state.columns_size = columns_size
            st.session_state.column_width = column_width
            st.session_state.columns_color = columns_color

    ###
    @st.cache(show_spinner=False)
    def get_demo():
        """Get the demo files

        Returns:
            PIL.Image   : input file opened with Pillow
            PIL.Image   : input file opened with Pillow
        """

        out_img_demo_1 = Image.open("img_demo_1.jpg")
        out_img_demo_2 = Image.open("img_demo_2.jpg")

        return out_img_demo_1, out_img_demo_2

    ###
    def raz():
        st.session_state.list_coordinates = []
        st.session_state.list_images = []
        st.session_state.detect_reader = reader_type_list[0]

        st.session_state.columns_size = [2] + [1 for x in reader_type_list[1:]]
        st.session_state.column_width = [400] + [300 for x in reader_type_list[1:]]
        st.session_state.columns_color = ["rgb(228,26,28)"] + \
                                         ["rgb(79, 43, 255)" for x in reader_type_list[1:]]

        # Clear caches
        easyocr_detect.clear()
        ppocr_detect.clear()
        #mmocr_detect.clear()
        tesserocr_detect.clear()
        process_detect.clear()
        get_cropped.clear()
        easyocr_recog.clear()
        ppocr_recog.clear()
        #mmocr_recog.clear()
        tesserocr_recog.clear()


    ##----------- Initializations ---------------------------------------------------------------------
    #print("PID : ", os.getpid())

    st.title("OCR solutions comparator")
    #st.markdown("##### *EasyOCR, PPOCR, Tesseract*")
    st.markdown("##### *EasyOCR, PPOCR, MMOCR, Tesseract*")
    #st.markdown("#### PID : " + str(os.getpid()))

    # Initializations
    with st.spinner("Initializations in progress ..."):
        reader_type_list, reader_type_dict, list_dict_lang, \
        cols_size, dict_back_colors, fig_colorscale = initializations()
        img_demo_1, img_demo_2 = get_demo()

    ##----------- Choose language & image -------------------------------------------------------------
    st.markdown("#### Choose languages for the text recognition:")
    lang_col = st.columns(4)
    easyocr_key_lang = lang_col[0].selectbox(reader_type_list[0]+" :", list_dict_lang[0].keys(), 26)
    easyocr_lang = list_dict_lang[0][easyocr_key_lang]
    ppocr_key_lang = lang_col[1].selectbox(reader_type_list[1]+" :", list_dict_lang[1].keys(), 22)
    ppocr_lang = list_dict_lang[1][ppocr_key_lang]
    #mmocr_key_lang = lang_col[2].selectbox(reader_type_list[2]+" :", list_dict_lang[2].keys(), 0)
    #mmocr_lang = list_dict_lang[2][mmocr_key_lang]
    #tesserocr_key_lang = lang_col[3].selectbox(reader_type_list[3]+" :", list_dict_lang[3].keys(), 35)
    #tesserocr_lang = list_dict_lang[3][tesserocr_key_lang]
    tesserocr_key_lang = lang_col[2].selectbox(reader_type_list[2]+" :", list_dict_lang[2].keys(), 35)
    tesserocr_lang = list_dict_lang[2][tesserocr_key_lang]

    st.markdown("#### Choose picture:")
    cols_pict = st.columns([1, 2])
    img_typ = cols_pict[0].radio("", ['Upload file', 'Take a picture', 'Use a demo file'], \
                                index=0, on_change=raz)

    if img_typ == 'Upload file':
        image_file = cols_pict[1].file_uploader("Upload a file:", type=["jpg","jpeg"], on_change=raz)
    if img_typ == 'Take a picture':
        image_file = cols_pict[1].camera_input("Take a picture:", on_change=raz)
    if img_typ == 'Use a demo file':
        with st.expander('Choose a demo file:', expanded=True):
            demo_used = st.radio('', ['File 1', 'File 2'], index=0, \
                                horizontal=True, on_change=raz)
            cols_demo = st.columns([1, 2])
            cols_demo[0].markdown('###### File 1')
            cols_demo[0].image(img_demo_1, width=150)
            cols_demo[1].markdown('###### File 2')
            cols_demo[1].image(img_demo_2, width=300)
            if demo_used == 'File 1':
                image_file = 'img_demo_1.jpg'
            else:
                image_file = 'img_demo_2.jpg'

    ##----------- Process input image -----------------------------------------------------------------
    if image_file is not None:
        image_path, image_orig, image_cv2 = load_image(image_file)
        list_images = [image_orig, image_cv2]

    ##----------- Form with original image & hyperparameters for detectors ----------------------------
        with st.form("form1"):
            col1, col2 = st.columns(2, ) #gap="medium")
            col1.markdown("##### Original image")
            col1.image(list_images[0], width=400)
            col2.markdown("##### Hyperparameters values for detection")

            with col2.expander("Choose detection hyperparameters for " + reader_type_list[0], \
                            expanded=False):
                t0_min_size = st.slider("min_size", 1, 20, 10, step=1, \
                        help="min_size (int, default = 10) - Filter text box smaller than \
                            minimum value in pixel")
                t0_text_threshold = st.slider("text_threshold", 0.1, 1., 0.7, step=0.1, \
                        help="text_threshold (float, default = 0.7) - Text confidence threshold")
                t0_low_text = st.slider("low_text", 0.1, 1., 0.4, step=0.1, \
                        help="low_text (float, default = 0.4) - Text low-bound score")
                t0_link_threshold = st.slider("link_threshold", 0.1, 1., 0.4, step=0.1, \
                        help="link_threshold (float, default = 0.4) - Link confidence threshold")
                t0_canvas_size = st.slider("canvas_size", 2000, 5000, 2560, step=10, \
                        help='''canvas_size (int, default = 2560) \n
    Maximum e size. Image bigger than this value will be resized down''')
                t0_mag_ratio = st.slider("mag_ratio", 0.1, 5., 1., step=0.1, \
                        help="mag_ratio (float, default = 1) - Image magnification ratio")
                t0_slope_ths = st.slider("slope_ths", 0.01, 1., 0.1, step=0.01, \
                        help='''slope_ths (float, default = 0.1) - Maximum slope \
                                (delta y/delta x) to considered merging. \n
    Low valuans tiled boxes will not be merged.''')
                t0_ycenter_ths = st.slider("ycenter_ths", 0.1, 1., 0.5, step=0.1, \
                        help='''ycenter_ths (float, default = 0.5) - Maximum shift in y direction. \n
    Boxes wiifferent level should not be merged.''')
                t0_height_ths = st.slider("height_ths", 0.1, 1., 0.5, step=0.1, \
                        help='''height_ths (float, default = 0.5) - Maximum different in box height. \n
    Boxes wiery different text size should not be merged.''')
                t0_width_ths = st.slider("width_ths", 0.1, 1., 0.5, step=0.1, \
                        help="width_ths (float, default = 0.5) - Maximum horizontal \
                            distance to merge boxes.")
                t0_add_margin = st.slider("add_margin", 0.1, 1., 0.1, step=0.1, \
                        help='''add_margin (float, default = 0.1) - \
                                Extend bounding boxes in all direction by certain value. \n
    This is rtant for language with complex script (E.g. Thai).''')
                t0_optimal_num_chars = st.slider("optimal_num_chars", None, 100, None, step=10, \
                        help="optimal_num_chars (int, default = None) - If specified, bounding boxes \
                            with estimated number of characters near this value are returned first.")

            with col2.expander("Choose detection hyperparameters for " + reader_type_list[1], \
                            expanded=False):
                t1_det_algorithm = st.selectbox('det_algorithm', ['DB'], \
                        help='Type of detection algorithm selected. (default = DB)')
                t1_det_max_side_len = st.slider('det_max_side_len', 500, 2000, 960, step=10, \
                        help='''The maximum size of the long side of the image. (default = 960)\n
    Limit thximum image height and width.\n
    When theg side exceeds this value, the long side will be resized to this size, and the short side \
    will be ed proportionally.''')
                t1_det_db_thresh =  st.slider('det_db_thresh', 0.1, 1., 0.3, step=0.1, \
                        help='''Binarization threshold value of DB output map. (default = 0.3) \n
    Used to er the binarized image of DB prediction, setting 0.-0.3 has no obvious effect on the result.''')
                t1_det_db_box_thresh = st.slider('det_db_box_thresh', 0.1, 1., 0.6, step=0.1, \
                        help='''The threshold value of the DB output box. (default = 0.6) \n
    DB post-essing filter box threshold, if there is a missing box detected, it can be reduced as appropriate. \n
    Boxes sclower than this value will be discard.''')
                t1_det_db_unclip_ratio = st.slider('det_db_unclip_ratio', 1., 3.0, 1.6, step=0.1, \
                        help='''The expanded ratio of DB output box. (default = 1.6) \n
    Indicatee compactness of the text box, the smaller the value, the closer the text box to the text.''')
                t1_det_east_score_thresh = st.slider('det_east_cover_thresh', 0.1, 1., 0.8, step=0.1, \
                        help="Binarization threshold value of EAST output map. (default = 0.8)")
                t1_det_east_cover_thresh = st.slider('det_east_cover_thresh', 0.1, 1., 0.1, step=0.1, \
                        help='''The threshold value of the EAST output box. (default = 0.1) \n
    Boxes sclower than this value will be discarded.''')
                t1_det_east_nms_thresh = st.slider('det_east_nms_thresh', 0.1, 1., 0.2, step=0.1, \
                        help="The NMS threshold value of EAST model output box. (default = 0.2)")
                t1_det_db_score_mode = st.selectbox('det_db_score_mode', ['fast', 'slow'], \
                        help='''slow: use polygon box to calculate bbox score, fast: use rectangle box \
                        to calculate. (default = fast) \n
    Use rectlar box to calculate faster, and polygonal box more accurate for curved text area.''')
            """
            with col2.expander("Choose detection hyperparameters for " + reader_type_list[2], \
                            expanded=False):
                t2_det = st.selectbox('det', ['DB_r18','DB_r50','DBPP_r50','DRRG','FCE_IC15', \
                                            'FCE_CTW_DCNv2','MaskRCNN_CTW','MaskRCNN_IC15', \
                                            'MaskRCNN_IC17', 'PANet_CTW','PANet_IC15','PS_CTW',\
                                            'PS_IC15','Tesseract','TextSnake'], 10, \
                        help='Text detection algorithm. (default = PANet_IC15)')
                st.write("###### *More about text detection models*  πŸ‘‰  \
                        [here](https://mmocr.readthedocs.io/en/latest/textdet_models.html)")
                t2_merge_xdist = st.slider('merge_xdist', 1, 50, 20, step=1, \
                        help='The maximum x-axis distance to merge boxes. (defaut=20)')
            """
            #with col2.expander("Choose detection hyperparameters for " + reader_type_list[3], \
            with col2.expander("Choose detection hyperparameters for " + reader_type_list[2], \
                            expanded=False):
                t3_psm = st.selectbox('Page segmentation mode (psm)', \
                                    [' -  Default', \
                                    ' 4  Assume a single column of text of variable sizes', \
                                    ' 5  Assume a single uniform block of vertically aligned text', \
                                    ' 6  Assume a single uniform block of text', \
                                    ' 7  Treat the image as a single text line', \
                                    ' 8  Treat the image as a single word', \
                                    ' 9  Treat the image as a single word in a circle', \
                                    '10  Treat the image as a single character', \
                                    '11  Sparse text. Find as much text as possible in no \
                                            particular order', \
                                    '13  Raw line. Treat the image as a single text line, \
                                            bypassing hacks that are Tesseract-specific'])
                t3_oem = st.selectbox('OCR engine mode', ['0  Legacy engine only', \
                                    '1  Neural nets LSTM engine only', \
                                    '2  Legacy + LSTM engines', \
                                    '3  Default, based on what is available'], 3)
                t3_whitelist = st.text_input('Limit tesseract to recognize only this characters :', \
                        placeholder='Limit tesseract to recognize only this characters', \
                        help='Example for numbers only : 0123456789')

            color_hex = col2.color_picker('Set a color for box outlines:', '#004C99')
            color_part = color_hex.lstrip('#')
            color = tuple(int(color_part[i:i+2], 16) for i in (0, 2, 4))

            submit_detect = st.form_submit_button("Launch detection")

    ##----------- Process text detection --------------------------------------------------------------
        if submit_detect:
            # Process text detection

            if t0_optimal_num_chars == 0:
                t0_optimal_num_chars = None

            # Construct the config Tesseract parameter
            t3_config = ''
            psm = t3_psm[:2]
            if psm != ' -':
                t3_config += '--psm ' + psm.strip()
            oem = t3_oem[:1]
            if oem != '3':
                t3_config += ' --oem ' + oem
            if t3_whitelist != '':
                t3_config += ' -c tessedit_char_whitelist=' + t3_whitelist

            list_params_det = \
                [[easyocr_lang, \
                {'min_size': t0_min_size, 'text_threshold': t0_text_threshold, \
                'low_text': t0_low_text, 'link_threshold': t0_link_threshold, \
                'canvas_size': t0_canvas_size, 'mag_ratio': t0_mag_ratio, \
                'slope_ths': t0_slope_ths, 'ycenter_ths': t0_ycenter_ths, \
                'height_ths': t0_height_ths, 'width_ths': t0_width_ths, \
                'add_margin': t0_add_margin, 'optimal_num_chars': t0_optimal_num_chars \
                }], \
                [ppocr_lang, \
                {'det_algorithm': t1_det_algorithm, 'det_max_side_len': t1_det_max_side_len, \
                'det_db_thresh': t1_det_db_thresh, 'det_db_box_thresh': t1_det_db_box_thresh, \
                'det_db_unclip_ratio': t1_det_db_unclip_ratio, \
                'det_east_score_thresh': t1_det_east_score_thresh, \
                'det_east_cover_thresh': t1_det_east_cover_thresh, \
                'det_east_nms_thresh': t1_det_east_nms_thresh, \
                'det_db_score_mode': t1_det_db_score_mode}],
                #[mmocr_lang, {'det': t2_det, 'merge_xdist': t2_merge_xdist}],
                [tesserocr_lang, {'lang': tesserocr_lang, 'config': t3_config}]
                ]

            show_info1 = st.empty()
            show_info1.info("Readers initializations in progress (it may take a while) ...")
            list_readers = init_readers(list_params_det)

            show_info1.info("Text detection in progress ...")
            list_images, list_coordinates = process_detect(image_path, list_images, list_readers, \
                                                        list_params_det, color)
            show_info1.empty()

            # Clear previous recognition results
            st.session_state.df_results = pd.DataFrame([])

            st.session_state.list_readers = list_readers
            st.session_state.list_coordinates = list_coordinates
            st.session_state.list_images = list_images
            st.session_state.list_params_det = list_params_det

            if 'columns_size' not in st.session_state:
                st.session_state.columns_size = [2] + [1 for x in reader_type_list[1:]]
            if 'column_width' not in st.session_state:
                st.session_state.column_width = [400] + [300 for x in reader_type_list[1:]]
            if 'columns_color' not in st.session_state:
                st.session_state.columns_color = ["rgb(228,26,28)"] + \
                                                ["rgb(79, 43, 255)" for x in reader_type_list[1:]]

        if st.session_state.list_coordinates:
            list_coordinates = st.session_state.list_coordinates
            list_images = st.session_state.list_images
            list_readers = st.session_state.list_readers
            list_params_det = st.session_state.list_params_det

    ##----------- Text detection results --------------------------------------------------------------
            st.subheader("Text detection")
            show_detect = st.empty()
            list_ok_detect = []
            with show_detect.container():
                columns = st.columns(st.session_state.columns_size, ) #gap='medium')
                for no_col, col in enumerate(columns):
                    column_title = '<p style="font-size: 20px;color:' + \
                                st.session_state.columns_color[no_col] + \
                                ';">Detection with ' + reader_type_list[no_col]+ '</p>'
                    col.markdown(column_title, unsafe_allow_html=True)
                    if isinstance(list_images[no_col+2], PIL.Image.Image):
                        col.image(list_images[no_col+2], width=st.session_state.column_width[no_col], \
                                  use_column_width=True)
                        list_ok_detect.append(reader_type_list[no_col])
                    else:
                        col.write(list_images[no_col+2], use_column_width=True)

            st.subheader("Text recognition")

            st.markdown("##### Using detection performed above by:")
            st.radio('Choose the detecter:', list_ok_detect, key='detect_reader', \
                    horizontal=True, on_change=highlight)

    ##----------- Form with hyperparameters for recognition -----------------------
            st.markdown("##### Hyperparameters values for recognition:")
            with st.form("form2"):
                with st.expander("Choose recognition hyperparameters for " + reader_type_list[0], \
                                expanded=False):
                    t0_decoder = st.selectbox('decoder', ['greedy', 'beamsearch', 'wordbeamsearch'], \
                        help="decoder (string, default = 'greedy') - options are 'greedy', \
                            'beamsearch' and 'wordbeamsearch.")
                    t0_beamWidth = st.slider('beamWidth', 2, 20, 5, step=1, \
                        help="beamWidth (int, default = 5) - How many beam to keep when decoder = \
                            'beamsearch' or 'wordbeamsearch'.")
                    t0_batch_size = st.slider('batch_size', 1, 10, 1, step=1, \
                        help="batch_size (int, default = 1) - batch_size>1 will make EasyOCR faster \
                            but use more memory.")
                    t0_workers = st.slider('workers', 0, 10, 0, step=1, \
                        help="workers (int, default = 0) - Number thread used in of dataloader.")
                    t0_allowlist = st.text_input('allowlist', value="", max_chars=None, \
                        placeholder='Force EasyOCR to recognize only this subset of characters', \
                        help='''allowlist (string) - Force EasyOCR to recognize only subset of characters.\n
            Usefor specific problem (E.g. license plate, etc.)''')
                    t0_blocklist = st.text_input('blocklist', value="", max_chars=None, \
                        placeholder='Block subset of character (will be ignored if allowlist is given)', \
                        help='''blocklist (string) - Block subset of character. This argument will be \
                            ignored if allowlist is given.''')
                    t0_detail = st.radio('detail', [0, 1], 1, horizontal=True, \
                        help="detail (int, default = 1) - Set this to 0 for simple output")
                    t0_paragraph = st.radio('paragraph', [True, False], 1, horizontal=True, \
                        help='paragraph (bool, default = False) - Combine result into paragraph')
                    t0_contrast_ths = st.slider('contrast_ths', 0.05, 1., 0.1, step=0.01, \
                        help='''contrast_ths (float, default = 0.1) - Text box with contrast lower than \
                            this value will be passed into model 2 times.\n
            Firs with original image and second with contrast adjusted to 'adjust_contrast' value.\n
            The with more confident level will be returned as a result.''')
                    t0_adjust_contrast = st.slider('adjust_contrast', 0.1, 1., 0.5, step=0.1, \
                        help = 'adjust_contrast (float, default = 0.5) - target contrast level for low \
                        contrast text box')

                with st.expander("Choose recognition hyperparameters for " + reader_type_list[1], \
                                expanded=False):
                    t1_rec_algorithm = st.selectbox('rec_algorithm', ['CRNN', 'SVTR_LCNet'], 0, \
                        help="Type of recognition algorithm selected. (default=CRNN)")
                    t1_rec_batch_num = st.slider('rec_batch_num', 1, 50, step=1, \
                        help="When performing recognition, the batchsize of forward images. \
                            (default=30)")
                    t1_max_text_length = st.slider('max_text_length', 3, 250, 25, step=1, \
                        help="The maximum text length that the recognition algorithm can recognize. \
                            (default=25)")
                    t1_use_space_char = st.radio('use_space_char', [True, False], 0, horizontal=True, \
                        help="Whether to recognize spaces. (default=TRUE)")
                    t1_drop_score = st.slider('drop_score', 0., 1., 0.25, step=.05, \
                        help="Filter the output by score (from the recognition model), and those \
                            below this score will not be returned. (default=0.5)")
                """
                with st.expander("Choose recognition hyperparameters for " + reader_type_list[2], \
                                expanded=False):
                    t2_recog = st.selectbox('recog', ['ABINet','CRNN','CRNN_TPS','MASTER', \
                                'NRTR_1/16-1/8','NRTR_1/8-1/4','RobustScanner','SAR','SAR_CN', \
                                'SATRN','SATRN_sm','SEG','Tesseract'], 7, \
                            help='Text recognition algorithm. (default = SAR)')
                    st.write("###### *More about text recognition models*  πŸ‘‰  \
                            [here](https://mmocr.readthedocs.io/en/latest/textrecog_models.html)")
                """
                #with st.expander("Choose recognition hyperparameters for " + reader_type_list[3], \
                with st.expander("Choose recognition hyperparameters for " + reader_type_list[2], \
                                expanded=False):
                    t3r_psm = st.selectbox('Page segmentation mode (psm)', \
                                        [' -  Default', \
                                        ' 4  Assume a single column of text of variable sizes', \
                                        ' 5  Assume a single uniform block of vertically aligned \
                                                text', \
                                        ' 6  Assume a single uniform block of text', \
                                        ' 7  Treat the image as a single text line', \
                                        ' 8  Treat the image as a single word', \
                                        ' 9  Treat the image as a single word in a circle', \
                                        '10  Treat the image as a single character', \
                                        '11  Sparse text. Find as much text as possible in no \
                                                particular order', \
                                        '13  Raw line. Treat the image as a single text line, \
                                                bypassing hacks that are Tesseract-specific'])
                    t3r_oem = st.selectbox('OCR engine mode', ['0  Legacy engine only', \
                                        '1  Neural nets LSTM engine only', \
                                        '2  Legacy + LSTM engines', \
                                        '3  Default, based on what is available'], 3)
                    t3r_whitelist = st.text_input('Limit tesseract to recognize only this \
                                        characters :', \
                                        placeholder='Limit tesseract to recognize only this characters', \
                                        help='Example for numbers only : 0123456789')

                submit_reco = st.form_submit_button("Launch recognition")

            if submit_reco:
                process_detect.clear()
    ##----------- Process recognition ------------------------------------------
                reader_ind = reader_type_dict[st.session_state.detect_reader]
                list_boxes = list_coordinates[reader_ind]

                # Construct the config Tesseract parameter
                t3r_config = ''
                psm = t3r_psm[:2]
                if psm != ' -':
                    t3r_config += '--psm ' + psm.strip()
                oem = t3r_oem[:1]
                if oem != '3':
                    t3r_config += ' --oem ' + oem
                if t3r_whitelist != '':
                    t3r_config += ' -c tessedit_char_whitelist=' + t3r_whitelist

                list_params_rec = \
                    [{'decoder': t0_decoder, 'beamWidth': t0_beamWidth, \
                    'batch_size': t0_batch_size, 'workers': t0_workers, \
                    'allowlist': t0_allowlist, 'blocklist': t0_blocklist, \
                    'detail': t0_detail, 'paragraph': t0_paragraph, \
                    'contrast_ths': t0_contrast_ths, 'adjust_contrast': t0_adjust_contrast
                    },
                    { **list_params_det[1][1], **{'rec_algorithm': t1_rec_algorithm, \
                    'rec_batch_num': t1_rec_batch_num, 'max_text_length': t1_max_text_length, \
                    'use_space_char': t1_use_space_char, 'drop_score': t1_drop_score}, \
                    **{'lang': list_params_det[1][0]}
                    },
                    #{'recog': t2_recog},
                    {'lang': tesserocr_lang, 'config': t3r_config}
                    ]

                show_info2 = st.empty()

                with show_info2.container():
                    st.info("Text recognition in progress ...")
                    df_results, df_results_tesseract, list_reco_status = \
                            process_recog(list_readers, list_images[1], list_boxes, list_params_rec)
                show_info2.empty()

                st.session_state.df_results = df_results
                st.session_state.list_boxes = list_boxes
                st.session_state.df_results_tesseract = df_results_tesseract
                st.session_state.list_reco_status = list_reco_status

            if 'df_results' in st.session_state:
                if not st.session_state.df_results.empty:
    ##----------- Show recognition results ------------------------------------------------------------
                    results_cols = st.session_state.df_results.columns
                    list_col_text = np.arange(1, len(cols_size), 2)
                    list_col_confid = np.arange(2, len(cols_size), 2)

                    dict_draw_reco = {'in_image': st.session_state.list_images[1], \
                                    'in_boxes_coordinates': st.session_state.list_boxes, \
                                    'in_list_texts': [st.session_state.df_results[x].to_list() \
                                                        for x in results_cols[list_col_text]], \
                                    'in_list_confid': [st.session_state.df_results[x].to_list() \
                                                        for x in results_cols[list_col_confid]], \
                                    'in_dict_back_colors': dict_back_colors, \
                                    'in_df_results_tesseract' : st.session_state.df_results_tesseract, \
                                    'in_reader_type_list': reader_type_list
                                    }
                    show_reco = st.empty()

                    with st.form("form3"):
                        st.plotly_chart(fig_colorscale, use_container_width=True)

                        col_font, col_threshold = st.columns(2)

                        col_font.slider('Font scale', 1, 7, 1, step=1, key="font_scale_sld")
                        col_threshold.slider('% confidence threshold for text color change', 40, 100, 64, \
                                            step=1, key="conf_threshold_sld")
                        col_threshold.write("(text color is black below this % confidence threshold, \
                                            and white above)")

                        draw_reco_images(**dict_draw_reco)

                        submit_resize = st.form_submit_button("Refresh")

                    if submit_resize:
                        draw_reco_images(**dict_draw_reco, \
                                        in_font_scale=st.session_state.font_scale_sld, \
                                        in_conf_threshold=st.session_state.conf_threshold_sld)

                    st.subheader("Recognition details")
                    #with st.expander("Detailed areas for EasyOCR, PPOCR, MMOCR", expanded=True):
                    with st.expander("Detailed areas for EasyOCR, PPOCR", expanded=True):
                        cols = st.columns(cols_size)
                        cols[0].markdown('#### Detected area')
                        for i in range(1, (len(reader_type_list)-1)*2, 2):
                            cols[i].markdown('#### with ' + reader_type_list[i//2])

                        for row in st.session_state.df_results.itertuples():
                            #cols = st.columns(1 + len(reader_type_list)*2)
                            cols = st.columns(cols_size)
                            cols[0].image(row.cropped_image, width=150)
                            for ind_col in range(1, len(cols), 2):
                                cols[ind_col].write(getattr(row, results_cols[ind_col]))
                                cols[ind_col+1].write("("+str( \
                                    getattr(row, results_cols[ind_col+1]))+"%)")

                        st.download_button(
                            label="Download results as CSV file",
                            data=convert_df(st.session_state.df_results),
                            file_name='OCR_comparator_results.csv',
                            mime='text/csv',
                        )

                    if not st.session_state.df_results_tesseract.empty:
                        with st.expander("Detailed areas for Tesseract", expanded=False):
                            cols = st.columns([2,2,1])
                            cols[0].markdown('#### Detected area')
                            cols[1].markdown('#### with Tesseract')

                            for row in st.session_state.df_results_tesseract.itertuples():
                                cols = st.columns([2,2,1])
                                cols[0].image(row.cropped, width=150)
                                cols[1].write(getattr(row, 'text'))
                                cols[2].write("("+str(getattr(row, 'conf'))+"%)")

                            st.download_button(
                                label="Download Tesseract results as CSV file",
                                data=convert_df(st.session_state.df_results),
                                file_name='OCR_comparator_Tesseract_results.csv',
                                mime='text/csv',
                            )