Spaces:
Sleeping
Sleeping
img_norm_cfg = dict( | |
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True) | |
max_scale, min_scale = 1024, 512 | |
train_pipeline = [ | |
dict(type='LoadImageFromFile'), | |
dict(type='LoadAnnotations'), | |
dict(type='Resize', img_scale=(max_scale, min_scale), keep_ratio=True), | |
dict(type='RandomFlip', flip_ratio=0.), | |
dict(type='Normalize', **img_norm_cfg), | |
dict(type='Pad', size_divisor=32), | |
dict(type='KIEFormatBundle'), | |
dict( | |
type='Collect', | |
keys=['img', 'relations', 'texts', 'gt_bboxes', 'gt_labels']) | |
] | |
test_pipeline = [ | |
dict(type='LoadImageFromFile'), | |
dict(type='LoadAnnotations'), | |
dict(type='Resize', img_scale=(max_scale, min_scale), keep_ratio=True), | |
dict(type='RandomFlip', flip_ratio=0.), | |
dict(type='Normalize', **img_norm_cfg), | |
dict(type='Pad', size_divisor=32), | |
dict(type='KIEFormatBundle'), | |
dict( | |
type='Collect', | |
keys=['img', 'relations', 'texts', 'gt_bboxes'], | |
meta_keys=[ | |
'img_norm_cfg', 'img_shape', 'ori_filename', 'filename', | |
'ori_texts' | |
]) | |
] | |
dataset_type = 'KIEDataset' | |
data_root = 'data/wildreceipt' | |
loader = dict( | |
type='HardDiskLoader', | |
repeat=1, | |
parser=dict( | |
type='LineJsonParser', | |
keys=['file_name', 'height', 'width', 'annotations'])) | |
train = dict( | |
type=dataset_type, | |
ann_file=f'{data_root}/train.txt', | |
pipeline=train_pipeline, | |
img_prefix=data_root, | |
loader=loader, | |
dict_file=f'{data_root}/dict.txt', | |
test_mode=False) | |
test = dict( | |
type=dataset_type, | |
ann_file=f'{data_root}/test.txt', | |
pipeline=test_pipeline, | |
img_prefix=data_root, | |
loader=loader, | |
dict_file=f'{data_root}/dict.txt', | |
test_mode=True) | |
data = dict( | |
samples_per_gpu=4, | |
workers_per_gpu=4, | |
val_dataloader=dict(samples_per_gpu=1), | |
test_dataloader=dict(samples_per_gpu=1), | |
train=train, | |
val=test, | |
test=test) | |
evaluation = dict( | |
interval=1, | |
metric='macro_f1', | |
metric_options=dict( | |
macro_f1=dict( | |
ignores=[0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 25]))) | |
model = dict( | |
type='SDMGR', | |
backbone=dict(type='UNet', base_channels=16), | |
bbox_head=dict( | |
type='SDMGRHead', visual_dim=16, num_chars=92, num_classes=26), | |
visual_modality=True, | |
train_cfg=None, | |
test_cfg=None, | |
class_list=f'{data_root}/class_list.txt') | |
optimizer = dict(type='Adam', weight_decay=0.0001) | |
optimizer_config = dict(grad_clip=None) | |
lr_config = dict( | |
policy='step', | |
warmup='linear', | |
warmup_iters=1, | |
warmup_ratio=1, | |
step=[40, 50]) | |
total_epochs = 60 | |
checkpoint_config = dict(interval=1) | |
log_config = dict(interval=50, hooks=[dict(type='TextLoggerHook')]) | |
dist_params = dict(backend='nccl') | |
log_level = 'INFO' | |
load_from = None | |
resume_from = None | |
workflow = [('train', 1)] | |
find_unused_parameters = True | |