Spaces:
Sleeping
Sleeping
_base_ = [ | |
'../../_base_/schedules/schedule_adadelta_18e.py', | |
'../../_base_/default_runtime.py' | |
] | |
categories = [ | |
'address', 'book', 'company', 'game', 'government', 'movie', 'name', | |
'organization', 'position', 'scene' | |
] | |
test_ann_file = 'data/cluener2020/dev.json' | |
train_ann_file = 'data/cluener2020/train.json' | |
vocab_file = 'data/cluener2020/vocab.txt' | |
max_len = 128 | |
loader = dict( | |
type='HardDiskLoader', | |
repeat=1, | |
parser=dict(type='LineJsonParser', keys=['text', 'label'])) | |
ner_convertor = dict( | |
type='NerConvertor', | |
annotation_type='bio', | |
vocab_file=vocab_file, | |
categories=categories, | |
max_len=max_len) | |
test_pipeline = [ | |
dict(type='NerTransform', label_convertor=ner_convertor, max_len=max_len), | |
dict(type='ToTensorNER') | |
] | |
train_pipeline = [ | |
dict(type='NerTransform', label_convertor=ner_convertor, max_len=max_len), | |
dict(type='ToTensorNER') | |
] | |
dataset_type = 'NerDataset' | |
train = dict( | |
type=dataset_type, | |
ann_file=train_ann_file, | |
loader=loader, | |
pipeline=train_pipeline, | |
test_mode=False) | |
test = dict( | |
type=dataset_type, | |
ann_file=test_ann_file, | |
loader=loader, | |
pipeline=test_pipeline, | |
test_mode=True) | |
data = dict( | |
samples_per_gpu=8, workers_per_gpu=2, train=train, val=test, test=test) | |
evaluation = dict(interval=1, metric='f1-score') | |
model = dict( | |
type='NerClassifier', | |
encoder=dict( | |
type='BertEncoder', | |
max_position_embeddings=512, | |
init_cfg=dict( | |
type='Pretrained', | |
checkpoint='https://download.openmmlab.com/mmocr/ner/' | |
'bert_softmax/bert_pretrain.pth')), | |
decoder=dict(type='FCDecoder'), | |
loss=dict(type='MaskedCrossEntropyLoss'), | |
label_convertor=ner_convertor) | |
test_cfg = None | |