Spaces:
Sleeping
Sleeping
_base_ = [ | |
'../../_base_/default_runtime.py', | |
'../../_base_/schedules/schedule_adam_step_20e.py', | |
'../../_base_/recog_pipelines/abinet_pipeline.py', | |
'../../_base_/recog_datasets/toy_data.py' | |
# '../../_base_/recog_datasets/ST_MJ_alphanumeric_train.py', | |
# '../../_base_/recog_datasets/academic_test.py' | |
] | |
train_list = {{_base_.train_list}} | |
test_list = {{_base_.test_list}} | |
train_pipeline = {{_base_.train_pipeline}} | |
test_pipeline = {{_base_.test_pipeline}} | |
# Model | |
num_chars = 37 | |
max_seq_len = 26 | |
label_convertor = dict( | |
type='ABIConvertor', | |
dict_type='DICT36', | |
with_unknown=False, | |
with_padding=False, | |
lower=True, | |
) | |
model = dict( | |
type='ABINet', | |
backbone=dict(type='ResNetABI'), | |
encoder=dict( | |
type='ABIVisionModel', | |
encoder=dict( | |
type='TransformerEncoder', | |
n_layers=3, | |
n_head=8, | |
d_model=512, | |
d_inner=2048, | |
dropout=0.1, | |
max_len=8 * 32, | |
), | |
decoder=dict( | |
type='ABIVisionDecoder', | |
in_channels=512, | |
num_channels=64, | |
attn_height=8, | |
attn_width=32, | |
attn_mode='nearest', | |
use_result='feature', | |
num_chars=num_chars, | |
max_seq_len=max_seq_len, | |
init_cfg=dict(type='Xavier', layer='Conv2d')), | |
), | |
loss=dict( | |
type='ABILoss', | |
enc_weight=1.0, | |
dec_weight=1.0, | |
fusion_weight=1.0, | |
num_classes=num_chars), | |
label_convertor=label_convertor, | |
max_seq_len=max_seq_len, | |
iter_size=1) | |
data = dict( | |
samples_per_gpu=192, | |
workers_per_gpu=8, | |
val_dataloader=dict(samples_per_gpu=1), | |
test_dataloader=dict(samples_per_gpu=1), | |
train=dict( | |
type='UniformConcatDataset', | |
datasets=train_list, | |
pipeline=train_pipeline), | |
val=dict( | |
type='UniformConcatDataset', | |
datasets=test_list, | |
pipeline=test_pipeline), | |
test=dict( | |
type='UniformConcatDataset', | |
datasets=test_list, | |
pipeline=test_pipeline)) | |
evaluation = dict(interval=1, metric='acc') | |