File size: 1,318 Bytes
db651b7 f036ad4 9d09bdd f036ad4 797d116 f036ad4 6d2185b 797d116 6d2185b e2bd3a1 6d2185b f036ad4 9d09bdd f036ad4 6d2185b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 |
---
title: Diabetic Retinopathy Detection
emoji: 👁️
colorFrom: gray
colorTo: pink
sdk: gradio
sdk_version: 4.32.2
app_file: app.py
pinned: false
license: apache-2.0
---
# Diabetic Retinopathy Detection with AI
## Setup
### Cloning the repo
```bash
git clone https://github.com/SDAIA-KAUST-AI/diabetic-retinopathy-detection.git
```
### Gradio app environment
Install from pip requirements file:
```bash
conda create -y -n retinopathy_app python=3.10
conda activate retinopathy_app
pip install -r requirements.txt
python app.py
```
The app will download 280 MB of files from S3 and launch.
Install manually:
```bash
pip install pytorch --index-url https://download.pytorch.org/whl/cpu
pip install gradio
pip install transformers
```
### Training environment
Create conda environment from YAML:
```bash
mamba env create -n retinopathy_train -f environment.yml
```
Download the data from [Kaggle](https://www.kaggle.com/competitions/diabetic-retinopathy-detection/data) or use kaggle API:
```bash
pip install kaggle
kaggle competitions download -c diabetic-retinopathy-detection
mkdir retinopathy_data/
unzip diabetic-retinopathy-detection.zip -d retinopathy_data/
```
Launch training:
```bash
conda activate retinopathy_train
python train.py
```
The trained model will be put into `lightning_logs/`.
|