|
import gradio as gr |
|
import numpy as np |
|
from tensorflow.keras.preprocessing.text import Tokenizer |
|
from tensorflow.keras.preprocessing.sequence import pad_sequences |
|
import re |
|
from huggingface_hub import from_pretrained_keras |
|
|
|
|
|
model = from_pretrained_keras("vrclc/transliteration") |
|
|
|
|
|
source_tokens = list('abcdefghijklmnopqrstuvwxyz ') |
|
source_tokenizer = Tokenizer(char_level=True, filters='') |
|
source_tokenizer.fit_on_texts(source_tokens) |
|
|
|
malayalam_tokens = [ |
|
|
|
'അ', 'ആ', 'ഇ', 'ഈ', 'ഉ', 'ഊ', 'ഋ', 'ൠ', 'ഌ', 'ൡ', 'എ', 'ഏ', 'ഐ', 'ഒ', 'ഓ', 'ഔ', |
|
|
|
'ക', 'ഖ', 'ഗ', 'ഘ', 'ങ', 'ച', 'ഛ', 'ജ', 'ഝ', 'ഞ', |
|
'ട', 'ഠ', 'ഡ', 'ഢ', 'ണ', 'ത', 'ഥ', 'ദ', 'ധ', 'ന', |
|
'പ', 'ഫ', 'ബ', 'ഭ', 'മ', 'യ', 'ര', 'ല', 'വ', 'ശ', |
|
'ഷ', 'സ', 'ഹ', 'ള', 'ഴ', 'റ', |
|
|
|
'ൺ', 'ൻ', 'ർ', 'ൽ', 'ൾ', |
|
|
|
'ം', 'ഃ', '്', |
|
|
|
'ാ', 'ി', 'ീ', 'ു', 'ൂ', 'ൃ', 'ൄ', 'െ', 'േ', 'ൈ', 'ൊ', 'ോ', 'ൌ', 'ൗ', ' ' |
|
] |
|
|
|
|
|
target_tokenizer = Tokenizer(char_level=True, filters='') |
|
target_tokenizer.fit_on_texts(malayalam_tokens) |
|
|
|
|
|
max_seq_length = model.get_layer("encoder_input").input_shape[0][1] |
|
|
|
def transliterate_with_split_tokens(input_text, model, source_tokenizer, target_tokenizer, max_seq_length): |
|
""" |
|
Transliterates input text, preserving non-token characters. |
|
""" |
|
|
|
if not input_text: |
|
return "" |
|
|
|
|
|
tokens_and_non_tokens = re.findall(r"([a-zA-Z]+)|([^a-zA-Z]+)", input_text) |
|
transliterated_text = "" |
|
|
|
for token_or_non_token in tokens_and_non_tokens: |
|
token = token_or_non_token[0] |
|
non_token = token_or_non_token[1] |
|
|
|
if token: |
|
|
|
token = token.lower() |
|
input_sequence = source_tokenizer.texts_to_sequences([token])[0] |
|
input_sequence_padded = pad_sequences([input_sequence], maxlen=max_seq_length, padding='post') |
|
predicted_sequence = model.predict(input_sequence_padded) |
|
predicted_indices = np.argmax(predicted_sequence, axis=-1)[0] |
|
transliterated_word = ''.join([target_tokenizer.index_word[idx] for idx in predicted_indices if idx != 0]) |
|
transliterated_text += transliterated_word |
|
elif non_token: |
|
transliterated_text += non_token |
|
|
|
return transliterated_text |
|
|
|
|
|
def create_transliteration_interface(): |
|
|
|
input_textbox = gr.Textbox( |
|
lines=3, |
|
placeholder="Enter English text to transliterate to Malayalam...", |
|
label="Input Text" |
|
) |
|
|
|
output_textbox = gr.Textbox( |
|
lines=3, |
|
label="Transliterated Malayalam Text" |
|
) |
|
|
|
|
|
interface = gr.Interface( |
|
fn=transliterate_with_split_tokens, |
|
inputs=[ |
|
gr.Textbox( |
|
lines=3, |
|
placeholder="Enter English text to transliterate to Malayalam...", |
|
label="Input Text" |
|
) |
|
], |
|
outputs=[ |
|
gr.Textbox( |
|
lines=3, |
|
label="Transliterated Malayalam Text" |
|
) |
|
], |
|
title="🌟 English to Malayalam Transliterator", |
|
description="Transliterate English text to Malayalam characters. Simply type or paste your English text, and see the Malayalam transliteration instantly!", |
|
article="## How to Use\n1. Enter English text in the input box\n2. The transliteration will appear automatically\n3. Works with words, phrases, and sentences", |
|
examples=[ |
|
["ente veed"], |
|
["malayalam"], |
|
["hello world"], |
|
["njan pranayam"] |
|
], |
|
theme="huggingface" |
|
) |
|
|
|
return interface |
|
|
|
|
|
if __name__ == "__main__": |
|
iface = create_transliteration_interface() |
|
iface.launch() |