Spaces:
Running
Running
import os | |
import spaces | |
import torch | |
from diffusers import StableDiffusionXLPipeline, EulerAncestralDiscreteScheduler | |
import gradio as gr | |
import random | |
import tqdm | |
# Enable TQDM progress tracking | |
tqdm.monitor_interval = 0 | |
# Load the diffusion pipelines | |
pipe1 = StableDiffusionXLPipeline.from_pretrained( | |
"kayfahaarukku/UrangDiffusion-1.4", | |
torch_dtype=torch.float16, | |
custom_pipeline="lpw_stable_diffusion_xl", | |
) | |
pipe1.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe1.scheduler.config) | |
pipe2 = StableDiffusionXLPipeline.from_pretrained( | |
"kayfahaarukku/UrangDiffusion-2.0", | |
torch_dtype=torch.float16, | |
custom_pipeline="lpw_stable_diffusion_xl", | |
) | |
pipe2.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe2.scheduler.config) | |
# Function to generate images from both models | |
def generate_comparison(prompt, negative_prompt, use_defaults, resolution, guidance_scale, num_inference_steps, seed, randomize_seed, progress=gr.Progress()): | |
pipe1.to('cuda') | |
pipe2.to('cuda') | |
if randomize_seed: | |
seed = random.randint(0, 99999999) | |
if use_defaults: | |
prompt = f"{prompt}, best quality, amazing quality, very aesthetic" | |
negative_prompt = f"nsfw, lowres, (bad), text, error, fewer, extra, missing, worst quality, jpeg artifacts, low quality, watermark, unfinished, displeasing, oldest, early, chromatic aberration, signature, extra digits, artistic error, username, scan, [abstract], {negative_prompt}" | |
generator = torch.manual_seed(seed) | |
def callback(step, timestep, latents): | |
progress(step / (2 * num_inference_steps)) | |
return | |
width, height = map(int, resolution.split('x')) | |
# Generate image with UrangDiffusion-1.4 | |
image1 = pipe1( | |
prompt, | |
negative_prompt=negative_prompt, | |
width=width, | |
height=height, | |
guidance_scale=guidance_scale, | |
num_inference_steps=num_inference_steps, | |
generator=generator, | |
callback=callback, | |
callback_steps=1 | |
).images[0] | |
# Generate image with UrangDiffusion-2.0 | |
image2 = pipe2( | |
prompt, | |
negative_prompt=negative_prompt, | |
width=width, | |
height=height, | |
guidance_scale=guidance_scale, | |
num_inference_steps=num_inference_steps, | |
generator=generator, | |
callback=callback, | |
callback_steps=1 | |
).images[0] | |
torch.cuda.empty_cache() | |
metadata_text = f"{prompt}\nNegative prompt: {negative_prompt}\nSteps: {num_inference_steps}, Sampler: Euler a, Size: {width}x{height}, Seed: {seed}, CFG scale: {guidance_scale}" | |
return image1, image2, seed, metadata_text | |
# Define Gradio interface | |
def interface_fn(prompt, negative_prompt, use_defaults, resolution, guidance_scale, num_inference_steps, seed, randomize_seed, progress=gr.Progress()): | |
image1, image2, seed, metadata_text = generate_comparison(prompt, negative_prompt, use_defaults, resolution, guidance_scale, num_inference_steps, seed, randomize_seed, progress) | |
return image1, image2, seed, gr.update(value=metadata_text) | |
def reset_inputs(): | |
return gr.update(value=''), gr.update(value=''), gr.update(value=True), gr.update(value='832x1216'), gr.update(value=7), gr.update(value=28), gr.update(value=0), gr.update(value=True), gr.update(value='') | |
with gr.Blocks(title="UrangDiffusion Comparison Demo", theme="NoCrypt/miku@1.2.1") as demo: | |
gr.HTML( | |
"<h1>UrangDiffusion 1.4 vs 2.0 Comparison Demo</h1>" | |
"This demo showcases a comparison between UrangDiffusion 1.4 and 2.0." | |
) | |
with gr.Row(): | |
with gr.Column(): | |
prompt_input = gr.Textbox(lines=2, placeholder="Enter prompt here", label="Prompt") | |
negative_prompt_input = gr.Textbox(lines=2, placeholder="Enter negative prompt here", label="Negative Prompt") | |
use_defaults_input = gr.Checkbox(label="Use Default Quality Tags and Negative Prompt", value=True) | |
resolution_input = gr.Radio( | |
choices=[ | |
"1024x1024", "1152x896", "896x1152", "1216x832", "832x1216", | |
"1344x768", "768x1344", "1536x640", "640x1536" | |
], | |
label="Resolution", | |
value="832x1216" | |
) | |
guidance_scale_input = gr.Slider(minimum=1, maximum=20, step=0.5, label="Guidance Scale", value=7) | |
num_inference_steps_input = gr.Slider(minimum=1, maximum=100, step=1, label="Number of Inference Steps", value=28) | |
seed_input = gr.Slider(minimum=0, maximum=999999999, step=1, label="Seed", value=0, interactive=True) | |
randomize_seed_input = gr.Checkbox(label="Randomize Seed", value=True) | |
generate_button = gr.Button("Generate Comparison") | |
reset_button = gr.Button("Reset") | |
with gr.Column(): | |
with gr.Row(): | |
output_image1 = gr.Image(type="pil", label="UrangDiffusion 1.4") | |
output_image2 = gr.Image(type="pil", label="UrangDiffusion 2.0") | |
with gr.Accordion("Parameters", open=False): | |
gr.Markdown( | |
""" | |
This parameter is compatible with Stable Diffusion WebUI's parameter importer. | |
""" | |
) | |
metadata_textbox = gr.Textbox(lines=6, label="Image Parameters", interactive=False, max_lines=6) | |
gr.Markdown( | |
""" | |
### Recommended prompt formatting: | |
`1girl/1boy, character name, from what series, everything else in any order, best quality, amazing quality, very aesthetic` | |
**PS:** `best quality, amazing quality, very aesthetic` is automatically added when "Use Default Quality Tags and Negative Prompt" is enabled | |
### Recommended settings: | |
- Steps: 25-30 | |
- CFG: 5-7 | |
""" | |
) | |
generate_button.click( | |
interface_fn, | |
inputs=[ | |
prompt_input, negative_prompt_input, use_defaults_input, resolution_input, guidance_scale_input, num_inference_steps_input, seed_input, randomize_seed_input | |
], | |
outputs=[output_image1, output_image2, seed_input, metadata_textbox] | |
) | |
reset_button.click( | |
reset_inputs, | |
inputs=[], | |
outputs=[ | |
prompt_input, negative_prompt_input, use_defaults_input, resolution_input, guidance_scale_input, num_inference_steps_input, seed_input, randomize_seed_input, metadata_textbox | |
] | |
) | |
demo.queue(max_size=20).launch(share=False) |