File size: 3,603 Bytes
5d82ba5
9ac174a
c6ad3ed
5d82ba5
 
 
c6ad3ed
5d82ba5
 
 
 
 
 
b0e960e
 
5d82ba5
 
 
 
 
 
9ac174a
 
5d82ba5
 
 
 
 
b0e960e
5d82ba5
 
200468f
b0e960e
fca2f7e
b0e960e
 
 
 
5d82ba5
b0e960e
 
 
 
 
 
5d82ba5
 
 
 
 
 
 
 
 
 
cb9a173
 
5d82ba5
 
 
b0e960e
 
 
 
5d82ba5
cb9a173
0d76975
 
 
b0e960e
 
5d82ba5
 
 
 
4b49fe7
5d82ba5
 
 
 
 
b0e960e
 
5d82ba5
 
b0e960e
5d82ba5
4b49fe7
5d82ba5
 
 
b0e960e
 
 
 
 
89ae04a
b0e960e
 
 
 
 
 
fca2f7e
b0e960e
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
import os
import spaces
import gradio as gr
import torch
import yaml
import numpy as np

from munch import munchify
import torchvision.transforms as transforms
from torchvision.transforms import functional as F
from diffusers import (
    AutoPipelineForInpainting,
)
from generate_dataset import outpainting_generator_rectangle, merge_images_horizontally
from ddim_with_prob import DDIMSchedulerCustom

transform = transforms.Compose([
        transforms.ToPILImage(),
        transforms.Resize((512, 512), interpolation=F.InterpolationMode.LANCZOS),
    ])


@spaces.GPU(duration=120)
def pref_inpainting(image,
                    box_width_ratio,
                    mask_random_start,
                    steps,
                    ):
    with open("./configs/paintreward_train_configs.yaml") as file:
        config_dict= yaml.safe_load(file)
        config = munchify(config_dict)
        
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    print(f"Current Device is {device}")
    
    pipe_ours = AutoPipelineForInpainting.from_pretrained(
                './model_ckpt', torch_dtype=torch.float16, variant='fp16')
    pipe_ours.scheduler = DDIMSchedulerCustom.from_config(pipe_ours.scheduler.config)

    pipe_runway = AutoPipelineForInpainting.from_pretrained("runwayml/stable-diffusion-inpainting", torch_dtype=torch.float16, variant='fp16')
    
    
    pipe_ours = pipe_ours.to(device)
    pipe_runway = pipe_runway.to(device)
    print('Loading pipeline')
   
    color, mask = outpainting_generator_rectangle(image, box_width_ratio/100, mask_random_start)
    mask = mask.convert('L')
   
    color, mask = np.array(color).transpose(2, 0, 1), np.array(mask)
    mask = mask[None, ...]
    mask_ = np.zeros_like(mask)
    mask_[mask < 125] = 0
    mask_[mask >= 125] = 1
    
    color = torch.from_numpy(color).to(device)
    mask = torch.from_numpy(mask).to(device)


    color, mask = transform(color), transform(mask)
    res_ours = pipe_ours(prompt='', image=color, mask_image=mask, eta=config.eta).images[0]
    print('Running inference ours')
    res_runway = pipe_runway(prompt="", image=color, mask_image=mask).images[0]
    print('Running inference runway')
    
    # res.save(os.path.join('./',  'test.png'))
    res_ours = merge_images_horizontally(color, res_ours, logo_path='./logo/pref_logo.png')
    res_runway = merge_images_horizontally(color, res_runway, logo_path='./logo/runway_logo.png')


    return res_ours, res_runway


inputs = [
    gr.Image(type="pil", image_mode="RGBA", label='Input Image'), # shape=[512, 512]
    gr.Slider(25, 45, value=35, step=1, label="box_width_ratio"),
    gr.Slider(0, 256, value=125, step=1, label="mask_random_start"),
    gr.Slider(30, 100, value=50, step=5, label="steps"),
]

outputs = [
    gr.Image(type="pil", image_mode="RGBA", label='PrefPaint', container=True, width="100%"),
    gr.Image(type="pil", image_mode="RGBA", label='RunwayPaint', container=True, width="100%"), 
]

files = os.listdir("./assets")
examples = [
    [f"./assets/{file_name}", 25, 125, 50] for file_name in files
]


with gr.Blocks() as demo:
    iface = gr.Interface(
        fn=pref_inpainting,
        inputs=inputs,
        outputs=outputs,
        title="Inpainting with Human Preference (Only one GPU is available, you may need to queue.)",
        description="Upload an image and start your inpainting (currently only supporting outpainting masks; other mask types coming soon).",
        theme="default",
        examples=examples,
        # allow_flagging="never"
    )
    # iface.launch()
    
demo.launch()