Spaces:
Sleeping
Sleeping
""" | |
Entrypoint for the CLI tool. | |
This module serves as the entry point for a command-line interface (CLI) tool. | |
It is designed to interact with OpenAI's language models. | |
The module provides functionality to: | |
- Load necessary environment variables, | |
- Configure various parameters for the AI interaction, | |
- Manage the generation or improvement of code projects. | |
Main Functionality | |
------------------ | |
- Load environment variables required for OpenAI API interaction. | |
- Parse user-specified parameters for project configuration and AI behavior. | |
- Facilitate interaction with AI models, databases, and archival processes. | |
Parameters | |
---------- | |
None | |
Notes | |
----- | |
- The `OPENAI_API_KEY` must be set in the environment or provided in a `.env` file within the working directory. | |
- The default project path is `projects/example`. | |
- When using the `azure_endpoint` parameter, provide the Azure OpenAI service endpoint URL. | |
""" | |
import difflib | |
import logging | |
import os | |
import sys | |
from pathlib import Path | |
import openai | |
import typer | |
from dotenv import load_dotenv | |
from langchain.globals import set_llm_cache | |
from langchain_community.cache import SQLiteCache | |
from termcolor import colored | |
from gpt_engineer.applications.cli.cli_agent import CliAgent | |
from gpt_engineer.applications.cli.collect import collect_and_send_human_review | |
from gpt_engineer.applications.cli.file_selector import FileSelector | |
from gpt_engineer.core.ai import AI, ClipboardAI | |
from gpt_engineer.core.default.disk_execution_env import DiskExecutionEnv | |
from gpt_engineer.core.default.disk_memory import DiskMemory | |
from gpt_engineer.core.default.file_store import FileStore | |
from gpt_engineer.core.default.paths import PREPROMPTS_PATH, memory_path | |
from gpt_engineer.core.default.steps import ( | |
execute_entrypoint, | |
gen_code, | |
handle_improve_mode, | |
improve_fn as improve_fn, | |
) | |
from gpt_engineer.core.files_dict import FilesDict | |
from gpt_engineer.core.git import stage_uncommitted_to_git | |
from gpt_engineer.core.preprompts_holder import PrepromptsHolder | |
from gpt_engineer.core.prompt import Prompt | |
from gpt_engineer.tools.custom_steps import clarified_gen, lite_gen, self_heal | |
app = typer.Typer( | |
context_settings={"help_option_names": ["-h", "--help"]} | |
) # creates a CLI app | |
def load_env_if_needed(): | |
""" | |
Load environment variables if the OPENAI_API_KEY is not already set. | |
This function checks if the OPENAI_API_KEY environment variable is set, | |
and if not, it attempts to load it from a .env file in the current working | |
directory. It then sets the openai.api_key for use in the application. | |
""" | |
# We have all these checks for legacy reasons... | |
if os.getenv("OPENAI_API_KEY") is None: | |
load_dotenv() | |
if os.getenv("OPENAI_API_KEY") is None: | |
load_dotenv(dotenv_path=os.path.join(os.getcwd(), ".env")) | |
openai.api_key = os.getenv("OPENAI_API_KEY") | |
if os.getenv("ANTHROPIC_API_KEY") is None: | |
load_dotenv() | |
if os.getenv("ANTHROPIC_API_KEY") is None: | |
load_dotenv(dotenv_path=os.path.join(os.getcwd(), ".env")) | |
def concatenate_paths(base_path, sub_path): | |
# Compute the relative path from base_path to sub_path | |
relative_path = os.path.relpath(sub_path, base_path) | |
# If the relative path is not in the parent directory, use the original sub_path | |
if not relative_path.startswith(".."): | |
return sub_path | |
# Otherwise, concatenate base_path and sub_path | |
return os.path.normpath(os.path.join(base_path, sub_path)) | |
def load_prompt( | |
input_repo: DiskMemory, | |
improve_mode: bool, | |
prompt_file: str, | |
image_directory: str, | |
entrypoint_prompt_file: str = "", | |
) -> Prompt: | |
""" | |
Load or request a prompt from the user based on the mode. | |
Parameters | |
---------- | |
input_repo : DiskMemory | |
The disk memory object where prompts and other data are stored. | |
improve_mode : bool | |
Flag indicating whether the application is in improve mode. | |
Returns | |
------- | |
str | |
The loaded or inputted prompt. | |
""" | |
if os.path.isdir(prompt_file): | |
raise ValueError( | |
f"The path to the prompt, {prompt_file}, already exists as a directory. No prompt can be read from it. Please specify a prompt file using --prompt_file" | |
) | |
prompt_str = input_repo.get(prompt_file) | |
if prompt_str: | |
print(colored("Using prompt from file:", "green"), prompt_file) | |
print(prompt_str) | |
else: | |
if not improve_mode: | |
prompt_str = input( | |
"\nWhat application do you want gpt-engineer to generate?\n" | |
) | |
else: | |
prompt_str = input("\nHow do you want to improve the application?\n") | |
if entrypoint_prompt_file == "": | |
entrypoint_prompt = "" | |
else: | |
full_entrypoint_prompt_file = concatenate_paths( | |
input_repo.path, entrypoint_prompt_file | |
) | |
if os.path.isfile(full_entrypoint_prompt_file): | |
entrypoint_prompt = input_repo.get(full_entrypoint_prompt_file) | |
else: | |
raise ValueError("The provided file at --entrypoint-prompt does not exist") | |
if image_directory == "": | |
return Prompt(prompt_str, entrypoint_prompt=entrypoint_prompt) | |
full_image_directory = concatenate_paths(input_repo.path, image_directory) | |
if os.path.isdir(full_image_directory): | |
if len(os.listdir(full_image_directory)) == 0: | |
raise ValueError("The provided --image_directory is empty.") | |
image_repo = DiskMemory(full_image_directory) | |
return Prompt( | |
prompt_str, | |
image_repo.get(".").to_dict(), | |
entrypoint_prompt=entrypoint_prompt, | |
) | |
else: | |
raise ValueError("The provided --image_directory is not a directory.") | |
def get_preprompts_path(use_custom_preprompts: bool, input_path: Path) -> Path: | |
""" | |
Get the path to the preprompts, using custom ones if specified. | |
Parameters | |
---------- | |
use_custom_preprompts : bool | |
Flag indicating whether to use custom preprompts. | |
input_path : Path | |
The path to the project directory. | |
Returns | |
------- | |
Path | |
The path to the directory containing the preprompts. | |
""" | |
original_preprompts_path = PREPROMPTS_PATH | |
if not use_custom_preprompts: | |
return original_preprompts_path | |
custom_preprompts_path = input_path / "preprompts" | |
if not custom_preprompts_path.exists(): | |
custom_preprompts_path.mkdir() | |
for file in original_preprompts_path.glob("*"): | |
if not (custom_preprompts_path / file.name).exists(): | |
(custom_preprompts_path / file.name).write_text(file.read_text()) | |
return custom_preprompts_path | |
def compare(f1: FilesDict, f2: FilesDict): | |
def colored_diff(s1, s2): | |
lines1 = s1.splitlines() | |
lines2 = s2.splitlines() | |
diff = difflib.unified_diff(lines1, lines2, lineterm="") | |
RED = "\033[38;5;202m" | |
GREEN = "\033[92m" | |
RESET = "\033[0m" | |
colored_lines = [] | |
for line in diff: | |
if line.startswith("+"): | |
colored_lines.append(GREEN + line + RESET) | |
elif line.startswith("-"): | |
colored_lines.append(RED + line + RESET) | |
else: | |
colored_lines.append(line) | |
return "\n".join(colored_lines) | |
for file in sorted(set(f1) | set(f2)): | |
diff = colored_diff(f1.get(file, ""), f2.get(file, "")) | |
if diff: | |
print(f"Changes to {file}:") | |
print(diff) | |
def prompt_yesno() -> bool: | |
TERM_CHOICES = colored("y", "green") + "/" + colored("n", "red") + " " | |
while True: | |
response = input(TERM_CHOICES).strip().lower() | |
if response in ["y", "yes"]: | |
return True | |
if response in ["n", "no"]: | |
break | |
print("Please respond with 'y' or 'n'") | |
def main( | |
project_path: str = typer.Argument(".", help="path"), | |
model: str = typer.Option("gpt-4o", "--model", "-m", help="model id string"), | |
temperature: float = typer.Option( | |
0.1, | |
"--temperature", | |
"-t", | |
help="Controls randomness: lower values for more focused, deterministic outputs", | |
), | |
improve_mode: bool = typer.Option( | |
False, | |
"--improve", | |
"-i", | |
help="Improve an existing project by modifying the files.", | |
), | |
lite_mode: bool = typer.Option( | |
False, | |
"--lite", | |
"-l", | |
help="Lite mode: run a generation using only the main prompt.", | |
), | |
clarify_mode: bool = typer.Option( | |
False, | |
"--clarify", | |
"-c", | |
help="Clarify mode - discuss specification with AI before implementation.", | |
), | |
self_heal_mode: bool = typer.Option( | |
False, | |
"--self-heal", | |
"-sh", | |
help="Self-heal mode - fix the code by itself when it fails.", | |
), | |
azure_endpoint: str = typer.Option( | |
"", | |
"--azure", | |
"-a", | |
help="""Endpoint for your Azure OpenAI Service (https://xx.openai.azure.com). | |
In that case, the given model is the deployment name chosen in the Azure AI Studio.""", | |
), | |
use_custom_preprompts: bool = typer.Option( | |
False, | |
"--use-custom-preprompts", | |
help="""Use your project's custom preprompts instead of the default ones. | |
Copies all original preprompts to the project's workspace if they don't exist there.""", | |
), | |
llm_via_clipboard: bool = typer.Option( | |
False, | |
"--llm-via-clipboard", | |
help="Use the clipboard to communicate with the AI.", | |
), | |
verbose: bool = typer.Option( | |
False, "--verbose", "-v", help="Enable verbose logging for debugging." | |
), | |
debug: bool = typer.Option( | |
False, "--debug", "-d", help="Enable debug mode for debugging." | |
), | |
prompt_file: str = typer.Option( | |
"prompt", | |
"--prompt_file", | |
help="Relative path to a text file containing a prompt.", | |
), | |
entrypoint_prompt_file: str = typer.Option( | |
"", | |
"--entrypoint_prompt", | |
help="Relative path to a text file containing a file that specifies requirements for you entrypoint.", | |
), | |
image_directory: str = typer.Option( | |
"", | |
"--image_directory", | |
help="Relative path to a folder containing images.", | |
), | |
use_cache: bool = typer.Option( | |
False, | |
"--use_cache", | |
help="Speeds up computations and saves tokens when running the same prompt multiple times by caching the LLM response.", | |
), | |
no_execution: bool = typer.Option( | |
False, | |
"--no_execution", | |
help="Run setup but to not call LLM or write any code. For testing purposes.", | |
), | |
): | |
""" | |
The main entry point for the CLI tool that generates or improves a project. | |
This function sets up the CLI tool, loads environment variables, initializes | |
the AI, and processes the user's request to generate or improve a project | |
based on the provided arguments. | |
Parameters | |
---------- | |
project_path : str | |
The file path to the project directory. | |
model : str | |
The model ID string for the AI. | |
temperature : float | |
The temperature setting for the AI's responses. | |
improve_mode : bool | |
Flag indicating whether to improve an existing project. | |
lite_mode : bool | |
Flag indicating whether to run in lite mode. | |
clarify_mode : bool | |
Flag indicating whether to discuss specifications with AI before implementation. | |
self_heal_mode : bool | |
Flag indicating whether to enable self-healing mode. | |
azure_endpoint : str | |
The endpoint for Azure OpenAI services. | |
use_custom_preprompts : bool | |
Flag indicating whether to use custom preprompts. | |
prompt_file : str | |
Relative path to a text file containing a prompt. | |
entrypoint_prompt_file: str | |
Relative path to a text file containing a file that specifies requirements for you entrypoint. | |
image_directory: str | |
Relative path to a folder containing images. | |
use_cache: bool | |
Speeds up computations and saves tokens when running the same prompt multiple times by caching the LLM response. | |
verbose : bool | |
Flag indicating whether to enable verbose logging. | |
no_execution: bool | |
Run setup but to not call LLM or write any code. For testing purposes. | |
Returns | |
------- | |
None | |
""" | |
if debug: | |
import pdb | |
sys.excepthook = lambda *_: pdb.pm() | |
# Validate arguments | |
if improve_mode and (clarify_mode or lite_mode): | |
typer.echo("Error: Clarify and lite mode are not compatible with improve mode.") | |
raise typer.Exit(code=1) | |
# Set up logging | |
logging.basicConfig(level=logging.DEBUG if verbose else logging.INFO) | |
if use_cache: | |
set_llm_cache(SQLiteCache(database_path=".langchain.db")) | |
if improve_mode: | |
assert not ( | |
clarify_mode or lite_mode | |
), "Clarify and lite mode are not active for improve mode" | |
load_env_if_needed() | |
if llm_via_clipboard: | |
ai = ClipboardAI() | |
else: | |
ai = AI( | |
model_name=model, | |
temperature=temperature, | |
azure_endpoint=azure_endpoint, | |
) | |
path = Path(project_path) | |
print("Running gpt-engineer in", path.absolute(), "\n") | |
prompt = load_prompt( | |
DiskMemory(path), | |
improve_mode, | |
prompt_file, | |
image_directory, | |
entrypoint_prompt_file, | |
) | |
# todo: if ai.vision is false and not llm_via_clipboard - ask if they would like to use gpt-4-vision-preview instead? If so recreate AI | |
if not ai.vision: | |
prompt.image_urls = None | |
# configure generation function | |
if clarify_mode: | |
code_gen_fn = clarified_gen | |
elif lite_mode: | |
code_gen_fn = lite_gen | |
else: | |
code_gen_fn = gen_code | |
# configure execution function | |
if self_heal_mode: | |
execution_fn = self_heal | |
else: | |
execution_fn = execute_entrypoint | |
preprompts_holder = PrepromptsHolder( | |
get_preprompts_path(use_custom_preprompts, Path(project_path)) | |
) | |
memory = DiskMemory(memory_path(project_path)) | |
memory.archive_logs() | |
execution_env = DiskExecutionEnv() | |
agent = CliAgent.with_default_config( | |
memory, | |
execution_env, | |
ai=ai, | |
code_gen_fn=code_gen_fn, | |
improve_fn=improve_fn, | |
process_code_fn=execution_fn, | |
preprompts_holder=preprompts_holder, | |
) | |
files = FileStore(project_path) | |
if not no_execution: | |
if improve_mode: | |
files_dict_before = FileSelector(project_path).ask_for_files() | |
files_dict = handle_improve_mode(prompt, agent, memory, files_dict_before) | |
if not files_dict or files_dict_before == files_dict: | |
print( | |
f"No changes applied. Could you please upload the debug_log_file.txt in {memory.path}/logs folder in a github issue?" | |
) | |
else: | |
print("\nChanges to be made:") | |
compare(files_dict_before, files_dict) | |
print() | |
print(colored("Do you want to apply these changes?", "light_green")) | |
if not prompt_yesno(): | |
files_dict = files_dict_before | |
else: | |
files_dict = agent.init(prompt) | |
# collect user feedback if user consents | |
config = (code_gen_fn.__name__, execution_fn.__name__) | |
collect_and_send_human_review(prompt, model, temperature, config, memory) | |
stage_uncommitted_to_git(path, files_dict, improve_mode) | |
files.push(files_dict) | |
if ai.token_usage_log.is_openai_model(): | |
print("Total api cost: $ ", ai.token_usage_log.usage_cost()) | |
elif os.getenv("LOCAL_MODEL"): | |
print("Total api cost: $ 0.0 since we are using local LLM.") | |
else: | |
print("Total tokens used: ", ai.token_usage_log.total_tokens()) | |
if __name__ == "__main__": | |
app() | |