|
import os |
|
import yaml |
|
import gradio as gr |
|
import numpy as np |
|
|
|
import imageio, cv2 |
|
from moviepy.editor import * |
|
from skimage.transform import resize |
|
from skimage import img_as_ubyte |
|
from skimage.color import rgb2gray |
|
|
|
|
|
from tensorflow import keras |
|
|
|
|
|
model = keras.models.load_model('saved_model') |
|
|
|
|
|
samples = [] |
|
example_driving = os.listdir('asset/driving') |
|
for video in example_driving: |
|
samples.append([f'asset/driving/{video}', 0.5, False]) |
|
|
|
|
|
def inference(driving, |
|
split_pred = 0.4, |
|
predict_one = False, |
|
output_name = 'output.mp4', |
|
output_path = 'asset/output', |
|
cpu = False, |
|
): |
|
|
|
|
|
reader = imageio.get_reader(driving) |
|
fps = reader.get_meta_data()['fps'] |
|
driving_video = [] |
|
try: |
|
for im in reader: |
|
driving_video.append(im) |
|
except RuntimeError: |
|
pass |
|
reader.close() |
|
driving_video = [rgb2gray(resize(frame, (64, 64)))[..., np.newaxis] for frame in driving_video] |
|
|
|
example = np.array(driving_video) |
|
print(example.shape) |
|
|
|
start_pred_id = int(split_pred * example.shape[0]) |
|
frames = example[:start_pred_id, ...] |
|
original_frames = example[start_pred_id:, ...] |
|
new_predictions = np.zeros(shape=(example.shape[0] - start_pred_id, *frames[0].shape)) |
|
|
|
|
|
for i in range(example.shape[0] - start_pred_id): |
|
|
|
if predict_one: |
|
frames = example[: start_pred_id + i + 1, ...] |
|
else: |
|
frames = np.concatenate((example[: start_pred_id+1 , ...], new_predictions[:i, ...]), axis=0) |
|
new_prediction = model.predict(np.expand_dims(frames, axis=0)) |
|
new_prediction = np.squeeze(new_prediction, axis=0) |
|
predicted_frame = np.expand_dims(new_prediction[-1, ...], axis=0) |
|
|
|
|
|
new_predictions[i] = predicted_frame |
|
|
|
|
|
def postprocess(frame_set, save_file): |
|
|
|
current_frames = np.squeeze(frame_set) |
|
current_frames = current_frames[..., np.newaxis] * np.ones(3) |
|
current_frames = (current_frames * 255).astype(np.uint8) |
|
current_frames = list(current_frames) |
|
|
|
print(f'{output_path}/{save_file}') |
|
imageio.mimsave(f'{output_path}/{save_file}', current_frames, fps=fps) |
|
|
|
|
|
os.makedirs(output_path, exist_ok=True) |
|
postprocess(original_frames, "original.mp4") |
|
postprocess(new_predictions, output_name) |
|
return f'{output_path}/{output_name}', f'{output_path}/original.mp4' |
|
|
|
iface = gr.Interface( |
|
inference, |
|
inputs = [ |
|
gr.inputs.Video(label='Video', type='mp4'), |
|
gr.inputs.Slider(minimum=.1, maximum=.9, default=.5, step=.001, label="prediction start"), |
|
gr.inputs.Checkbox(label="predict one frame only", default=False), |
|
|
|
], |
|
outputs = [ |
|
gr.outputs.Video(label='result'), |
|
gr.outputs.Video(label='ground truth') |
|
], |
|
|
|
title = 'Next-Frame Video Prediction with Convolutional LSTMs', |
|
description = "This app is an unofficial demo web app of the Next-Frame Video Prediction with Convolutional LSTMs by Keras.", |
|
examples = samples, |
|
).launch(enable_queue=True, cache_examples=True) |