kevinwang676's picture
Upload folder using huggingface_hub
be9690e verified
|
raw
history blame
8.66 kB
<div align="center">
# 🍵 Matcha-TTS: A fast TTS architecture with conditional flow matching
### [Shivam Mehta](https://www.kth.se/profile/smehta), [Ruibo Tu](https://www.kth.se/profile/ruibo), [Jonas Beskow](https://www.kth.se/profile/beskow), [Éva Székely](https://www.kth.se/profile/szekely), and [Gustav Eje Henter](https://people.kth.se/~ghe/)
[![python](https://img.shields.io/badge/-Python_3.10-blue?logo=python&logoColor=white)](https://www.python.org/downloads/release/python-3100/)
[![pytorch](https://img.shields.io/badge/PyTorch_2.0+-ee4c2c?logo=pytorch&logoColor=white)](https://pytorch.org/get-started/locally/)
[![lightning](https://img.shields.io/badge/-Lightning_2.0+-792ee5?logo=pytorchlightning&logoColor=white)](https://pytorchlightning.ai/)
[![hydra](https://img.shields.io/badge/Config-Hydra_1.3-89b8cd)](https://hydra.cc/)
[![black](https://img.shields.io/badge/Code%20Style-Black-black.svg?labelColor=gray)](https://black.readthedocs.io/en/stable/)
[![isort](https://img.shields.io/badge/%20imports-isort-%231674b1?style=flat&labelColor=ef8336)](https://pycqa.github.io/isort/)
<p style="text-align: center;">
<img src="https://shivammehta25.github.io/Matcha-TTS/images/logo.png" height="128"/>
</p>
</div>
> This is the official code implementation of 🍵 Matcha-TTS [ICASSP 2024].
We propose 🍵 Matcha-TTS, a new approach to non-autoregressive neural TTS, that uses [conditional flow matching](https://arxiv.org/abs/2210.02747) (similar to [rectified flows](https://arxiv.org/abs/2209.03003)) to speed up ODE-based speech synthesis. Our method:
- Is probabilistic
- Has compact memory footprint
- Sounds highly natural
- Is very fast to synthesise from
Check out our [demo page](https://shivammehta25.github.io/Matcha-TTS) and read [our ICASSP 2024 paper](https://arxiv.org/abs/2309.03199) for more details.
[Pre-trained models](https://drive.google.com/drive/folders/17C_gYgEHOxI5ZypcfE_k1piKCtyR0isJ?usp=sharing) will be automatically downloaded with the CLI or gradio interface.
You can also [try 🍵 Matcha-TTS in your browser on HuggingFace 🤗 spaces](https://huggingface.co/spaces/shivammehta25/Matcha-TTS).
## Teaser video
[![Watch the video](https://img.youtube.com/vi/xmvJkz3bqw0/hqdefault.jpg)](https://youtu.be/xmvJkz3bqw0)
## Installation
1. Create an environment (suggested but optional)
```
conda create -n matcha-tts python=3.10 -y
conda activate matcha-tts
```
2. Install Matcha TTS using pip or from source
```bash
pip install matcha-tts
```
from source
```bash
pip install git+https://github.com/shivammehta25/Matcha-TTS.git
cd Matcha-TTS
pip install -e .
```
3. Run CLI / gradio app / jupyter notebook
```bash
# This will download the required models
matcha-tts --text "<INPUT TEXT>"
```
or
```bash
matcha-tts-app
```
or open `synthesis.ipynb` on jupyter notebook
### CLI Arguments
- To synthesise from given text, run:
```bash
matcha-tts --text "<INPUT TEXT>"
```
- To synthesise from a file, run:
```bash
matcha-tts --file <PATH TO FILE>
```
- To batch synthesise from a file, run:
```bash
matcha-tts --file <PATH TO FILE> --batched
```
Additional arguments
- Speaking rate
```bash
matcha-tts --text "<INPUT TEXT>" --speaking_rate 1.0
```
- Sampling temperature
```bash
matcha-tts --text "<INPUT TEXT>" --temperature 0.667
```
- Euler ODE solver steps
```bash
matcha-tts --text "<INPUT TEXT>" --steps 10
```
## Train with your own dataset
Let's assume we are training with LJ Speech
1. Download the dataset from [here](https://keithito.com/LJ-Speech-Dataset/), extract it to `data/LJSpeech-1.1`, and prepare the file lists to point to the extracted data like for [item 5 in the setup of the NVIDIA Tacotron 2 repo](https://github.com/NVIDIA/tacotron2#setup).
2. Clone and enter the Matcha-TTS repository
```bash
git clone https://github.com/shivammehta25/Matcha-TTS.git
cd Matcha-TTS
```
3. Install the package from source
```bash
pip install -e .
```
4. Go to `configs/data/ljspeech.yaml` and change
```yaml
train_filelist_path: data/filelists/ljs_audio_text_train_filelist.txt
valid_filelist_path: data/filelists/ljs_audio_text_val_filelist.txt
```
5. Generate normalisation statistics with the yaml file of dataset configuration
```bash
matcha-data-stats -i ljspeech.yaml
# Output:
#{'mel_mean': -5.53662231756592, 'mel_std': 2.1161014277038574}
```
Update these values in `configs/data/ljspeech.yaml` under `data_statistics` key.
```bash
data_statistics: # Computed for ljspeech dataset
mel_mean: -5.536622
mel_std: 2.116101
```
to the paths of your train and validation filelists.
6. Run the training script
```bash
make train-ljspeech
```
or
```bash
python matcha/train.py experiment=ljspeech
```
- for a minimum memory run
```bash
python matcha/train.py experiment=ljspeech_min_memory
```
- for multi-gpu training, run
```bash
python matcha/train.py experiment=ljspeech trainer.devices=[0,1]
```
7. Synthesise from the custom trained model
```bash
matcha-tts --text "<INPUT TEXT>" --checkpoint_path <PATH TO CHECKPOINT>
```
## ONNX support
> Special thanks to [@mush42](https://github.com/mush42) for implementing ONNX export and inference support.
It is possible to export Matcha checkpoints to [ONNX](https://onnx.ai/), and run inference on the exported ONNX graph.
### ONNX export
To export a checkpoint to ONNX, first install ONNX with
```bash
pip install onnx
```
then run the following:
```bash
python3 -m matcha.onnx.export matcha.ckpt model.onnx --n-timesteps 5
```
Optionally, the ONNX exporter accepts **vocoder-name** and **vocoder-checkpoint** arguments. This enables you to embed the vocoder in the exported graph and generate waveforms in a single run (similar to end-to-end TTS systems).
**Note** that `n_timesteps` is treated as a hyper-parameter rather than a model input. This means you should specify it during export (not during inference). If not specified, `n_timesteps` is set to **5**.
**Important**: for now, torch>=2.1.0 is needed for export since the `scaled_product_attention` operator is not exportable in older versions. Until the final version is released, those who want to export their models must install torch>=2.1.0 manually as a pre-release.
### ONNX Inference
To run inference on the exported model, first install `onnxruntime` using
```bash
pip install onnxruntime
pip install onnxruntime-gpu # for GPU inference
```
then use the following:
```bash
python3 -m matcha.onnx.infer model.onnx --text "hey" --output-dir ./outputs
```
You can also control synthesis parameters:
```bash
python3 -m matcha.onnx.infer model.onnx --text "hey" --output-dir ./outputs --temperature 0.4 --speaking_rate 0.9 --spk 0
```
To run inference on **GPU**, make sure to install **onnxruntime-gpu** package, and then pass `--gpu` to the inference command:
```bash
python3 -m matcha.onnx.infer model.onnx --text "hey" --output-dir ./outputs --gpu
```
If you exported only Matcha to ONNX, this will write mel-spectrogram as graphs and `numpy` arrays to the output directory.
If you embedded the vocoder in the exported graph, this will write `.wav` audio files to the output directory.
If you exported only Matcha to ONNX, and you want to run a full TTS pipeline, you can pass a path to a vocoder model in `ONNX` format:
```bash
python3 -m matcha.onnx.infer model.onnx --text "hey" --output-dir ./outputs --vocoder hifigan.small.onnx
```
This will write `.wav` audio files to the output directory.
## Citation information
If you use our code or otherwise find this work useful, please cite our paper:
```text
@inproceedings{mehta2024matcha,
title={Matcha-{TTS}: A fast {TTS} architecture with conditional flow matching},
author={Mehta, Shivam and Tu, Ruibo and Beskow, Jonas and Sz{\'e}kely, {\'E}va and Henter, Gustav Eje},
booktitle={Proc. ICASSP},
year={2024}
}
```
## Acknowledgements
Since this code uses [Lightning-Hydra-Template](https://github.com/ashleve/lightning-hydra-template), you have all the powers that come with it.
Other source code we would like to acknowledge:
- [Coqui-TTS](https://github.com/coqui-ai/TTS/tree/dev): For helping me figure out how to make cython binaries pip installable and encouragement
- [Hugging Face Diffusers](https://huggingface.co/): For their awesome diffusers library and its components
- [Grad-TTS](https://github.com/huawei-noah/Speech-Backbones/tree/main/Grad-TTS): For the monotonic alignment search source code
- [torchdyn](https://github.com/DiffEqML/torchdyn): Useful for trying other ODE solvers during research and development
- [labml.ai](https://nn.labml.ai/transformers/rope/index.html): For the RoPE implementation