File size: 15,528 Bytes
fd508d7 b3be2a9 fd508d7 aee8e11 fd508d7 d519921 fd508d7 3ba36fc fd508d7 90d632e ca6eb64 aa5f607 b3be2a9 aa5f607 e81e85b fd508d7 0443f2a af2b5af fd508d7 af2b5af 56e4f3d b3be2a9 89a387a b3be2a9 0443f2a ebc470f 0443f2a 78a49c2 99939d8 0443f2a 99939d8 0443f2a 89a387a 0443f2a 29d4767 0443f2a 7acdad2 0443f2a 99939d8 78a49c2 0443f2a 99939d8 af2b5af 0443f2a af2b5af 1902a05 89a387a 2d4bf4a 56e4f3d 0443f2a 99939d8 0443f2a 89a387a 0443f2a 7b7377a 56e4f3d 89a387a 56e4f3d 93b8804 b3be2a9 89a387a b3be2a9 56e4f3d fd508d7 56e4f3d fd508d7 df3747d aa5f607 d519921 0443f2a 78a49c2 d519921 78a49c2 d519921 3331ada d519921 0443f2a d519921 56e4f3d d519921 93b8804 c9f8c2c 3580ef0 93b8804 e5acbb2 29d4767 fd508d7 cc28e50 fd508d7 2da65b0 fd508d7 3aba01d fd508d7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 |
import spaces
import torch
import torch.nn.functional as F
from torch import Tensor
from transformers import AutoTokenizer, AutoModel
import threading
import queue
import gradio as gr
import os
title = """
# 👋🏻Welcome to 🙋🏻♂️Tonic's 🐣e5-mistral🛌🏻Embeddings """
description = """
You can use this ZeroGPU Space to test out the current model [intfloat/e5-mistral-7b-instruct](https://huggingface.co/intfloat/e5-mistral-7b-instruct). 🐣e5-mistral🛌🏻 has a larger context🪟window, a different prompting/return🛠️mechanism and generally better results than other embedding models. use it via API to create embeddings or try out the sentence similarity to see how various optimization parameters affect performance.
You can also use 🐣e5-mistral🛌🏻 by cloning this space. 🧬🔬🔍 Simply click here: <a style="display:inline-block" href="https://huggingface.co/spaces/Tonic/e5?duplicate=true"><img src="https://img.shields.io/badge/-Duplicate%20Space-blue?labelColor=white&style=flat&logo=&logoWidth=14" alt="Duplicate Space"></a></h3>
Join us : 🌟TeamTonic🌟 is always making cool demos! Join our active builder's🛠️community 👻 [![Join us on Discord](https://img.shields.io/discord/1109943800132010065?label=Discord&logo=discord&style=flat-square)](https://discord.gg/GWpVpekp) On 🤗Huggingface: [TeamTonic](https://huggingface.co/TeamTonic) & [MultiTransformer](https://huggingface.co/MultiTransformer) On 🌐Github: [Tonic-AI](https://github.com/tonic-ai) & contribute to 🌟 [DataTonic](https://github.com/Tonic-AI/DataTonic) 🤗Big thanks to Yuvi Sharma and all the folks at huggingface for the community grant 🤗
"""
os.environ['PYTORCH_CUDA_ALLOC_CONF'] = 'max_split_size_mb:30'
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
tasks = {
'ArguAna': 'Given a claim, find documents that refute the claim',
'ClimateFEVER': 'Given a claim about climate change, retrieve documents that support or refute the claim',
'DBPedia': 'Given a query, retrieve relevant entity descriptions from DBPedia',
'FEVER': 'Given a claim, retrieve documents that support or refute the claim',
'FiQA2018': 'Given a financial question, retrieve user replies that best answer the question',
'HotpotQA': 'Given a multi-hop question, retrieve documents that can help answer the question',
'MSMARCO': 'Given a web search query, retrieve relevant passages that answer the query',
'NFCorpus': 'Given a question, retrieve relevant documents that best answer the question',
'NQ': 'Given a question, retrieve Wikipedia passages that answer the question',
'QuoraRetrieval': 'Given a question, retrieve questions that are semantically equivalent to the given question',
'SCIDOCS': 'Given a scientific paper title, retrieve paper abstracts that are cited by the given paper',
'SciFact': 'Given a scientific claim, retrieve documents that support or refute the claim',
'Touche2020': 'Given a question, retrieve detailed and persuasive arguments that answer the question',
'TRECCOVID': 'Given a query on COVID-19, retrieve documents that answer the query',
}
# Global queue for embedding requests
embedding_request_queue = queue.Queue()
embedding_response_queue = queue.Queue()
tokenizer = AutoTokenizer.from_pretrained('intfloat/e5-mistral-7b-instruct')
model = AutoModel.from_pretrained('intfloat/e5-mistral-7b-instruct', torch_dtype=torch.float16, device_map=device)
def last_token_pool(last_hidden_states: Tensor, attention_mask: Tensor) -> Tensor:
left_padding = (attention_mask[:, -1].sum() == attention_mask.shape[0])
if left_padding:
return last_hidden_states[:, -1]
else:
sequence_lengths = attention_mask.sum(dim=1) - 1
batch_size = last_hidden_states.shape[0]
return last_hidden_states[torch.arange(batch_size, device=last_hidden_states.device), sequence_lengths]
def clear_cuda_cache():
torch.cuda.empty_cache()
def free_memory(*args):
for arg in args:
del arg
def load_corpus_from_json(file_path):
with open(file_path, 'r') as file:
data = json.load(file)
return data
def embedding_worker():
while True:
# Wait for an item in the queue
item = embedding_request_queue.get()
if item is None:
break
selected_task, input_text = item
embeddings = compute_embeddings(selected_task, input_text)
formatted_response = format_response(embeddings)
embedding_response_queue.put(formatted_response)
embedding_request_queue.task_done()
clear_cuda_cache()
threading.Thread(target=embedding_worker, daemon=True).start()
@spaces.GPU
def compute_embeddings(selected_task, input_text):
try:
task_description = tasks[selected_task]
except KeyError:
print(f"Selected task not found: {selected_task}")
return f"Error: Task '{selected_task}' not found. Please select a valid task."
max_length = 2048
processed_texts = [f'Instruct: {task_description}\nQuery: {input_text}']
batch_dict = tokenizer(processed_texts, max_length=max_length - 1, return_attention_mask=False, padding=False, truncation=True)
batch_dict['input_ids'] = [input_ids + [tokenizer.eos_token_id] for input_ids in batch_dict['input_ids']]
batch_dict = tokenizer.pad(batch_dict, padding=True, return_attention_mask=True, return_tensors='pt')
batch_dict = {k: v.to(device) for k, v in batch_dict.items()}
outputs = model(**batch_dict)
embeddings = last_token_pool(outputs.last_hidden_state, batch_dict['attention_mask'])
embeddings = F.normalize(embeddings, p=2, dim=1)
embeddings_list = embeddings.detach().cpu().numpy().tolist()
clear_cuda_cache()
return embeddings_list
@spaces.GPU
def decode_embedding(embedding_str):
try:
embedding = [float(num) for num in embedding_str.split(',')]
embedding_tensor = torch.tensor(embedding, dtype=torch.float16, device=device)
decoded_embedding = tokenizer.decode(embedding_tensor[0], skip_special_tokens=True)
return decoded_embedding.cpu().numpy().tolist()
except Exception as e:
return f"Error in decoding: {str(e)}"
@spaces.GPU
def compute_similarity(selected_task, sentence1, sentence2, extra_sentence1, extra_sentence2):
try:
task_description = tasks[selected_task]
except KeyError:
print(f"Selected task not found: {selected_task}")
return f"Error: Task '{selected_task}' not found. Please select a valid task."
# Compute embeddings for each sentence
embeddings1 = compute_embeddings(selected_task, sentence1)
embeddings2 = compute_embeddings(selected_task, sentence2)
embeddings3 = compute_embeddings(selected_task, extra_sentence1)
embeddings4 = compute_embeddings(selected_task, extra_sentence2)
# Convert embeddings to tensors
embeddings_tensor1 = torch.tensor(embeddings1).to(device).half()
embeddings_tensor2 = torch.tensor(embeddings2).to(device).half()
embeddings_tensor3 = torch.tensor(embeddings3).to(device).half()
embeddings_tensor4 = torch.tensor(embeddings4).to(device).half()
# Compute cosine similarity
similarity1 = compute_cosine_similarity(embeddings1, embeddings2)
similarity2 = compute_cosine_similarity(embeddings1, embeddings3)
similarity3 = compute_cosine_similarity(embeddings1, embeddings4)
# Free memory
free_memory(embeddings1, embeddings2, embeddings3, embeddings4)
similarity_scores = {"Similarity 1-2": similarity1, "Similarity 1-3": similarity2, "Similarity 1-4": similarity3}
clear_cuda_cache()
return similarity_scores
@spaces.GPU
def compute_cosine_similarity(emb1, emb2):
tensor1 = torch.tensor(emb1).to(device).half()
tensor2 = torch.tensor(emb2).to(device).half()
similarity = F.cosine_similarity(tensor1, tensor2).item()
free_memory(tensor1, tensor2)
clear_cuda_cache()
return similarity
@spaces.GPU
def compute_embeddings_batch(input_texts):
max_length = 2042
processed_texts = [f'Instruct: {task_description}\nQuery: {text}' for text in input_texts]
batch_dict = tokenizer(processed_texts, max_length=max_length - 1, return_attention_mask=False, padding=False, truncation=True)
batch_dict['input_ids'] = [input_ids + [tokenizer.eos_token_id] for input_ids in batch_dict['input_ids']]
batch_dict = tokenizer.pad(batch_dict, padding=True, return_attention_mask=True, return_tensors='pt')
batch_dict = {k: v.to(device) for k, v in batch_dict.items()}
outputs = model(**batch_dict)
embeddings = last_token_pool(outputs.last_hidden_state, batch_dict['attention_mask'])
embeddings = F.normalize(embeddings, p=2, dim=1)
clear_cuda_cache()
return embeddings.detach().cpu().numpy()
def semantic_search(query_embedding, corpus_embeddings, top_k=5):
scores = np.dot(corpus_embeddings, query_embedding.T).flatten()
top_k_indices = np.argsort(scores)[::-1][:top_k]
return top_k_indices, scores[top_k_indices]
def search_similar_sentences(input_question, corpus_sentences, corpus_embeddings):
question_embedding = compute_embeddings_batch([input_question])[0]
top_k_indices, top_k_scores = semantic_search(question_embedding, corpus_embeddings)
results = [(corpus_sentences[i], top_k_scores[i]) for i in top_k_indices]
return results
# openai response object formatting
def format_response(embeddings):
return {
"data": [
{
"embedding": embeddings,
"index": 0,
"object": "embedding"
}
],
"model": "e5-mistral",
"object": "list",
"usage": {
"prompt_tokens": 17,
"total_tokens": 17
}
}
def generate_and_format_embeddings(selected_task, input_text):
embedding_request_queue.put((selected_task, input_text))
response = embedding_response_queue.get()
embedding_response_queue.task_done()
clear_cuda_cache()
return response
def app_interface():
corpus_sentences = []
corpus_embeddings = []
with gr.Blocks() as demo:
gr.Markdown(title)
gr.Markdown(description)
with gr.Row():
task_dropdown = gr.Dropdown(list(tasks.keys()), label="Select a Task", value=list(tasks.keys())[0])
with gr.Tab("Embedding Generation"):
input_text_box = gr.Textbox(label="📖Input Text")
compute_button = gr.Button("Try🐣🛌🏻e5")
output_display = gr.Textbox(label="🐣e5-mistral🛌🏻 Embeddings")
compute_button.click(
fn=compute_embeddings,
inputs=[task_dropdown, input_text_box],
outputs=output_display
)
with gr.Tab("Sentence Similarity"):
sentence1_box = gr.Textbox(label="'Focus Sentence' - The 'Subject'")
sentence2_box = gr.Textbox(label="'Input Sentence' - 1")
extra_sentence1_box = gr.Textbox(label="'Input Sentence' - 2")
extra_sentence2_box = gr.Textbox(label="'Input Sentence' - 3")
similarity_button = gr.Button("Compute Similarity")
similarity_output = gr.Textbox(label="🐣e5-mistral🛌🏻 Similarity Scores")
similarity_button.click(
fn=compute_similarity,
inputs=[task_dropdown, sentence1_box, sentence2_box, extra_sentence1_box, extra_sentence2_box],
outputs=similarity_output
)
with gr.Tab("Load Corpus"):
json_uploader = gr.File(label="Upload JSON File")
load_corpus_button = gr.Button("Load Corpus")
corpus_status = gr.Textbox(label="Corpus Status", value="Corpus not loaded")
def load_corpus(file_info):
if file_info is None:
return "No file uploaded. Please upload a JSON file."
try:
global corpus_sentences, corpus_embeddings
corpus_sentences = load_corpus_from_json(file_info['name'])
corpus_embeddings = compute_embeddings_batch(corpus_sentences)
return "Corpus loaded successfully with {} sentences.".format(len(corpus_sentences))
except Exception as e:
return "Error loading corpus: {}".format(e)
load_corpus_button.click(
fn=load_corpus,
inputs=json_uploader,
outputs=corpus_status
)
with gr.Tab("Semantic Search"):
input_question_box = gr.Textbox(label="Enter your question")
search_button = gr.Button("Search")
search_results_output = gr.Textbox(label="Search Results")
def perform_search(input_question):
if not corpus_sentences or not corpus_embeddings:
return "Corpus is not loaded. Please load a corpus first."
return search_similar_sentences(input_question, corpus_sentences, corpus_embeddings)
search_button.click(
fn=perform_search,
inputs=input_question_box,
outputs=search_results_output
)
with gr.Tab("Connector-like Embeddings"):
with gr.Row():
input_text_box_connector = gr.Textbox(label="Input Text", placeholder="Enter text or array of texts")
model_dropdown_connector = gr.Dropdown(label="Model", choices=["ArguAna", "ClimateFEVER", "DBPedia", "FEVER", "FiQA2018", "HotpotQA", "MSMARCO", "NFCorpus", "NQ", "QuoraRetrieval", "SCIDOCS", "SciFact", "Touche2020", "TRECCOVID"], value="text-embedding-ada-002")
encoding_format_connector = gr.Radio(label="Encoding Format", choices=["float", "base64"], value="float")
user_connector = gr.Textbox(label="User", placeholder="Enter user identifier (optional)")
submit_button_connector = gr.Button("Generate Embeddings")
output_display_connector = gr.JSON(label="Embeddings Output")
submit_button_connector.click(
fn=generate_and_format_embeddings,
inputs=[model_dropdown_connector, input_text_box_connector],
outputs=output_display_connector
)
# with gr.Tab("Decode Embedding"):
# embedding_input = gr.Textbox(label="Enter Embedding (comma-separated floats)")
# decode_button = gr.Button("Decode")
# decoded_output = gr.Textbox(label="Decoded Embedding")
#
# decode_button.click(
# fn=decode_embedding,
# inputs=embedding_input,
# outputs=decoded_output
# )
with gr.Row():
with gr.Column():
input_text_box
with gr.Column():
compute_button
output_display
return demo
app_interface().queue()
app_interface().launch() |