File size: 5,142 Bytes
2ea9ced |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 |
#!/usr/bin/env python3
from typing import * # pylint: disable=wildcard-import,unused-wildcard-import
import argparse
import itertools
import os
import sys
import torch
from ..models.auto import AutoLMScorer as LMScorer
def parse_args() -> argparse.Namespace:
parser = argparse.ArgumentParser(
description="Get sentences probability using a language model.",
)
parser.add_argument(
"sentences_file_path",
metavar="sentences-file-path",
type=str,
help="A file containing sentences to score, one per line."
" If - is given as filename it reads from stdin instead.",
)
parser.add_argument(
"--model-name",
"-m",
type=str,
default="gpt2",
help="The pretrained language model to use. Can be one of: %s."
% ", ".join(LMScorer.supported_model_names()),
)
parser.add_argument(
"--tokens",
"-t",
action="store_true",
help="If provided it provides the probability of each token of each sentence.",
)
parser.add_argument(
"--log-prob",
"-lp",
action="store_true",
help="If provided log probabilities are returned instead.",
)
parser.add_argument(
"--reduce",
"-r",
type=str,
default="prod",
help="Reduce strategy applied on token probabilities to get the sentence score."
" Available strategies are: prod, mean, gmean, hmean.",
)
parser.add_argument(
"--batch-size",
"-b",
type=int,
default=1,
help="Number of sentences to process in parallel.",
)
parser.add_argument(
"--significant-figures",
"-sf",
type=int,
default=5,
help="Number of significant figures to use when printing numbers.",
)
parser.add_argument(
"--cuda",
type=int,
default=-1,
help="If provided it runs the model on the given cuda device.",
)
parser.add_argument(
"--debug",
action="store_true",
help="If provided it provides additional logging in case of errors.",
)
return parser.parse_args()
def normalize_args(args: argparse.Namespace) -> None:
if args.sentences_file_path != "-":
args.sentences_file_path = os.path.realpath(args.sentences_file_path)
def validate_args(args: argparse.Namespace) -> None:
if args.sentences_file_path != "-":
if not os.path.isfile(args.sentences_file_path):
raise ValueError("The provided sentences file path is invalid.")
if args.cuda >= 0 and not torch.cuda.is_available():
raise ValueError("No Cuda device found.")
if args.cuda >= torch.cuda.device_count():
device_count = torch.cuda.device_count()
raise ValueError("Invalid Cuda device: %d/%d." % (args.cuda, device_count))
if args.batch_size <= 0:
raise ValueError("The batch size must be positive.")
if args.significant_figures <= 0:
raise ValueError("The number of significant figures must be positive.")
T1 = TypeVar("T1") # pylint: disable=invalid-name
def grouper(iterable: Iterable[T1], size: int) -> Generator[List[T1], None, None]:
it = iter(iterable) # pylint: disable=invalid-name
while True:
chunk = list(itertools.islice(it, size))
if not chunk:
return
yield chunk
def main(args: argparse.Namespace) -> None:
# pylint: disable=too-many-locals
if args.sentences_file_path == "-":
sentences_stream = sys.stdin
else:
sentences_stream = open(args.sentences_file_path, "r")
sig_fig = args.significant_figures
batch_size = args.batch_size
device = torch.device("cuda:%d" % args.cuda if args.cuda >= 0 else "cpu")
scorer = LMScorer.from_pretrained(
args.model_name, device=device, batch_size=batch_size
)
buffer_size = args.batch_size * 2
for sentences in grouper(sentences_stream, buffer_size):
sentences = [sentence.strip() for sentence in sentences]
sent_scores = scorer.sentence_score(
sentences, log=args.log_prob, reduce=args.reduce
)
if args.tokens:
sent_info = scorer.tokens_score(sentences, log=args.log_prob)
sent_num = len(sentences)
for i in range(sent_num):
sentence, sent_score = sentences[i], sent_scores[i]
print(f"%s\t%.{sig_fig}g" % (sentence, sent_score))
if args.tokens:
scores, _, tokens = sent_info[i]
for score, token in zip(scores, tokens):
print(f"%s\t%.{sig_fig}g" % (token, score))
print("")
if args.sentences_file_path != "-":
sentences_stream.close()
def run() -> None:
try:
args = parse_args()
normalize_args(args)
validate_args(args)
main(args)
except KeyboardInterrupt:
print("\nAborted!")
except Exception as err: # pylint: disable=broad-except
if args.debug:
raise
print("Error: %s" % err)
if __name__ == "__main__":
run()
|