Spaces:
Runtime error
Runtime error
File size: 1,260 Bytes
fa9917c c7baec5 fa9917c df18eaf 45d0f71 c85af71 45d0f71 2d548f2 77e17ee 9811602 2d548f2 72ea02e dcee1e9 45d0f71 835a2ac fc1fddc 45d0f71 fc1fddc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 |
import gradio as gr
import torch
from transformers import pipeline
app_title = "Portuguese Hate Speech Detection"
app_description = """
This app detects hate speech on Portuguese text using multiple models. You can either introduce your own sentences by filling in "Text" or click on one of the examples provided below.
"""
model_list = [
"knowhate/HateBERTimbau",
"knowhate/HateBERTimbau-youtube",
"knowhate/HateBERTimbau-twitter",
"knowhate/HateBERTimbau-yt-tt",
]
#pipe = pipeline("text-classification", model="knowhate/HateBERTimbau")
#demo = gr.Interface.from_pipeline(pipe)
#demo.launch()
def predict(text, chosen_model):
# Initialize the pipeline with the chosen model
model_pipeline = pipeline("text-classification", model=chosen_model)
result = model_pipeline(text)
label = result[0]['label']
return label
inputs = [
gr.Textbox(label="Text", value= "As pessoas tem que perceber que ser 'panasca' não é deixar de ser homem, é deixar de ser humano kkk"),
gr.Dropdown(label="Model", choices=model_list, value=model_list[1])
]
outputs = [
gr.Label(label="Result"),
]
gr.Interface(fn=predict, inputs=inputs, outputs=outputs, title=app_title,
description=app_description).launch() |