Spaces:
Runtime error
Runtime error
import gradio as gr | |
import cv2 | |
import numpy as np | |
import torch | |
import kornia as K | |
from kornia.core import Tensor | |
from kornia.contrib import FaceDetector, FaceDetectorResult, FaceKeypoint | |
def draw_keypoint(img: np.ndarray, det: FaceDetectorResult, kpt_type: FaceKeypoint) -> np.ndarray: | |
kpt = det.get_keypoint(kpt_type).int().tolist() | |
return cv2.circle(img, kpt, 2, (255, 0, 0), 2) | |
def detect(img_raw): | |
# preprocess | |
if img_raw is not None and len(img_raw.shape) == 3: | |
img = K.utils.image_to_tensor(img_raw, keepdim=False) | |
img = K.color.bgr_to_rgb(img.float()) | |
# create the detector and find the faces ! | |
face_detection = FaceDetector() | |
with torch.no_grad(): | |
dets = face_detection(img) | |
dets = [FaceDetectorResult(o) for o in dets[0]] | |
img_vis = img_raw.copy() | |
vis_threshold = 0.8 | |
for b in dets: | |
if b.score < vis_threshold: | |
continue | |
# Draw face bounding box | |
img_vis = cv2.rectangle(img_vis, b.top_left.int().tolist(), b.bottom_right.int().tolist(), (0, 255, 0), 4) | |
# Draw Keypoints | |
img_vis = draw_keypoint(img_vis, b, FaceKeypoint.EYE_LEFT) | |
img_vis = draw_keypoint(img_vis, b, FaceKeypoint.EYE_RIGHT) | |
img_vis = draw_keypoint(img_vis, b, FaceKeypoint.NOSE) | |
img_vis = draw_keypoint(img_vis, b, FaceKeypoint.MOUTH_LEFT) | |
img_vis = draw_keypoint(img_vis, b, FaceKeypoint.MOUTH_RIGHT) | |
return img_vis | |
title = "Kornia Face Detection" | |
description = "<p style='text-align: center'>This is a Gradio demo for Kornia's Face Detection.</p><p style='text-align: center'>To use it, simply upload your image, or click one of the examples to load them</p>" | |
article = "<p style='text-align: center'><a href='https://kornia.readthedocs.io/en/latest/' target='_blank'>Kornia Docs</a> | <a href='https://github.com/kornia/kornia' target='_blank'>Kornia Github Repo</a> | <a href='https://kornia.readthedocs.io/en/latest/applications/face_detection.html' target='_blank'>Kornia Face Detection Tutorial</a></p>" | |
examples = ['sample.jpg'] | |
with gr.Blocks(title=title) as demo: | |
gr.Markdown(f"# {title}") | |
gr.Markdown(description) | |
with gr.Row(): | |
input_image = gr.Image(type="numpy", label="Input Image") | |
output_image = gr.Image(type="numpy", label="Detected Faces") | |
gr.Examples(examples, inputs=input_image) | |
input_image.change(fn=detect, inputs=input_image, outputs=output_image) | |
gr.Markdown(article) | |
if __name__ == "__main__": | |
demo.launch() |