Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
File size: 3,182 Bytes
44d3e73 b522580 44d3e73 b522580 44d3e73 b522580 44d3e73 b522580 44d3e73 b522580 44d3e73 b522580 44d3e73 b522580 44d3e73 4ee69d5 44d3e73 eb0c80a f8d1a61 eb0c80a 44d3e73 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 |
import gradio as gr
import cv2
import numpy as np
import torch
import kornia as K
from kornia.core import Tensor
def edge_detection(filepath, detector):
img_bgr: np.ndarray = cv2.imread(filepath, cv2.IMREAD_COLOR)
x_bgr: torch.Tensor = K.utils.image_to_tensor(img_bgr)
x_bgr = x_bgr[None,...].float() / 255.
x_rgb: torch.Tensor = K.color.bgr_to_rgb(x_bgr)
x_gray = K.color.rgb_to_grayscale(x_rgb)
if detector == '1st order derivates in x':
grads: torch.Tensor = K.filters.spatial_gradient(x_gray, order=1)
grads_x = grads[:, :, 0]
grads_y = grads[:, :, 1]
output = K.utils.tensor_to_image(1. - grads_x.clamp(0., 1.))
elif detector == '1st order derivates in y':
grads: torch.Tensor = K.filters.spatial_gradient(x_gray, order=1)
grads_x = grads[:, :, 0]
grads_y = grads[:, :, 1]
output = K.utils.tensor_to_image(1. - grads_y.clamp(0., 1.))
elif detector == '2nd order derivatives in x':
grads: torch.Tensor = K.filters.spatial_gradient(x_gray, order=2)
grads_x = grads[:, :, 0]
grads_y = grads[:, :, 1]
output = K.utils.tensor_to_image(1. - grads_x.clamp(0., 1.))
elif detector == '2nd order derivatives in y':
grads: torch.Tensor = K.filters.spatial_gradient(x_gray, order=2)
grads_x = grads[:, :, 0]
grads_y = grads[:, :, 1]
output = K.utils.tensor_to_image(1. - grads_y.clamp(0., 1.))
elif detector == 'Sobel':
x_sobel: torch.Tensor = K.filters.sobel(x_gray)
output = K.utils.tensor_to_image(1. - x_sobel)
elif detector == 'Laplacian':
x_laplacian: torch.Tensor = K.filters.laplacian(x_gray, kernel_size=5)
output = K.utils.tensor_to_image(1. - x_laplacian.clamp(0., 1.))
else:
x_canny: torch.Tensor = K.filters.canny(x_gray)[0]
output = K.utils.tensor_to_image(1. - x_canny.clamp(0., 1.0))
return output
examples = [
["examples/huggingface.jpg", "1st order derivates in x"],
["examples/doraemon.jpg", "Canny"]
]
title = "Kornia Edge Detection"
description = "<p style='text-align: center'>This is a Gradio demo for Kornia's Edge Detection.</p><p style='text-align: center'>To use it, simply upload your image, or click one of the examples to load them, and select any edge detector to run it! Read more at the links at the bottom.</p>"
article = "<p style='text-align: center'><a href='https://kornia.readthedocs.io/en/latest/' target='_blank'>Kornia Docs</a> | <a href='https://github.com/kornia/kornia' target='_blank'>Kornia Github Repo</a> | <a href='https://kornia-tutorials.readthedocs.io/en/latest/filtering_edges.html' target='_blank'>Kornia Edge Detection Tutorial</a></p>"
iface = gr.Interface(edge_detection,
[
gr.Image(type="filepath"),
gr.Dropdown(choices=["1st order derivates in x", "1st order derivates in y", "2nd order derivatives in x", "2nd order derivatives in y", "Sobel", "Laplacian", "Canny"])
],
"image",
examples
)
iface.launch()
|