Spaces:
Sleeping
Sleeping
File size: 12,999 Bytes
2b8b77d 1eb5467 e1fcf74 2b8b77d e2371c5 16908f1 003a054 978580d 003a054 c6dfa2b e1fcf74 1314d69 f54a55a 592c68b 292c38f e1fcf74 e2371c5 592c68b 7b28dab 145506a 718ba97 7b28dab 9303de6 efbe74e 1314d69 145506a f217e4d 9a397ea 592c68b 978580d 718ba97 00fc70b f217e4d 1eb5467 0cbf06a ca9e441 0cbf06a c464ec4 0cbf06a f40fb7c cd2465c dc2976a f217e4d ca9e441 f217e4d 64b9ad0 cddcfed 1eb5467 9724323 1314d69 a61f19c dc2976a 16908f1 0be383f ea162a8 16908f1 978580d 1eb5467 978580d 1eb5467 16908f1 cddcfed 16908f1 5fd0376 c292764 0be383f ea162a8 0be383f 592c68b 718ba97 1314d69 cd2465c 6b97640 cd2465c 9272473 cd2465c 0ac7cc0 6b97640 cd2465c 07b6090 6b97640 cd2465c 9272473 07b6090 9272473 43fbea6 9272473 cd2465c 29017ec e517d30 29017ec 145506a 0cbf06a 29017ec f217e4d 1eb5467 d5a8945 7b9e6e4 1eb5467 718ba97 f217e4d 592c68b ccc38b8 145506a ccc38b8 ca9e441 ccc38b8 9085d76 0be383f ccc38b8 c292764 ccc38b8 0cbf06a ccc38b8 164edec 592c68b e4f255d 145506a 0cbf06a 1eb5467 718ba97 cddcfed 592c68b 164edec cd2465c 50d6862 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 |
import gradio as gr
import spaces
from clip_slider_pipeline import CLIPSliderFlux
from diffusers import FluxPipeline, AutoencoderTiny
import torch
import numpy as np
import cv2
from PIL import Image
from diffusers.utils import load_image
from diffusers.pipelines.flux.pipeline_flux_controlnet import FluxControlNetPipeline
from diffusers.models.controlnet_flux import FluxControlNetModel
from diffusers.utils import export_to_gif
def process_controlnet_img(image):
controlnet_img = np.array(image)
controlnet_img = cv2.Canny(controlnet_img, 100, 200)
controlnet_img = HWC3(controlnet_img)
controlnet_img = Image.fromarray(controlnet_img)
# load pipelines
taef1 = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=torch.bfloat16).to("cuda")
pipe = FluxPipeline.from_pretrained("black-forest-labs/FLUX.1-schnell",
vae=taef1,
torch_dtype=torch.bfloat16)
pipe.transformer.to(memory_format=torch.channels_last)
pipe.transformer = torch.compile(pipe.transformer, mode="max-autotune", fullgraph=True)
#pipe.enable_model_cpu_offload()
clip_slider = CLIPSliderFlux(pipe, device=torch.device("cuda"))
base_model = 'black-forest-labs/FLUX.1-schnell'
controlnet_model = 'InstantX/FLUX.1-dev-Controlnet-Canny-alpha'
# controlnet = FluxControlNetModel.from_pretrained(controlnet_model, torch_dtype=torch.bfloat16)
# pipe_controlnet = FluxControlNetPipeline.from_pretrained(base_model, controlnet=controlnet, torch_dtype=torch.bfloat16)
# t5_slider_controlnet = T5SliderFlux(sd_pipe=pipe_controlnet,device=torch.device("cuda"))
@spaces.GPU(duration=200)
def generate(concept_1, concept_2, scale, prompt, seed, recalc_directions, iterations, steps, interm_steps, guidance_scale,
x_concept_1, x_concept_2,
avg_diff_x,
img2img_type = None, img = None,
controlnet_scale= None, ip_adapter_scale=None,
):
slider_x = [concept_1, concept_2]
# check if avg diff for directions need to be re-calculated
print("slider_x", slider_x)
print("x_concept_1", x_concept_1, "x_concept_2", x_concept_2)
#torch.manual_seed(seed)
if not sorted(slider_x) == sorted([x_concept_1, x_concept_2]) or recalc_directions:
#avg_diff = clip_slider.find_latent_direction(slider_x[0], slider_x[1], num_iterations=iterations).to(torch.float16)
avg_diff = clip_slider.find_latent_direction(slider_x[0], slider_x[1], num_iterations=iterations)
x_concept_1, x_concept_2 = slider_x[0], slider_x[1]
images = []
high_scale = scale
low_scale = -1 * scale
for i in range(interm_steps):
cur_scale = low_scale + (high_scale - low_scale) * i / (steps - 1)
image = clip_slider.generate(prompt,
#guidance_scale=guidance_scale,
scale=cur_scale, seed=seed, num_inference_steps=steps, avg_diff=avg_diff)
images.append(image)
canvas = Image.new('RGB', (256*interm_steps, 256))
for i, im in enumerate(images):
canvas.paste(im.resize((256,256)), (256 * i, 0))
comma_concepts_x = f"{slider_x[1]}, {slider_x[0]}"
avg_diff_x = avg_diff.cpu()
return gr.update(label=comma_concepts_x, interactive=True, value=scale), x_concept_1, x_concept_2, avg_diff_x, export_to_gif(images, "clip.gif", fps=5), canvas
@spaces.GPU
def update_scales(x,prompt,seed, steps, interm_steps, guidance_scale,
avg_diff_x,
img2img_type = None, img = None,
controlnet_scale= None, ip_adapter_scale=None,):
print("Hola", x)
avg_diff = avg_diff_x.cuda()
# for spectrum generation
images = []
high_scale = x
low_scale = -1 * x
if img2img_type=="controlnet canny" and img is not None:
control_img = process_controlnet_img(img)
image = t5_slider_controlnet.generate(prompt, guidance_scale=guidance_scale, image=control_img, controlnet_conditioning_scale =controlnet_scale, scale=x, seed=seed, num_inference_steps=steps, avg_diff=avg_diff)
elif img2img_type=="ip adapter" and img is not None:
image = clip_slider.generate(prompt, guidance_scale=guidance_scale, ip_adapter_image=img, scale=x,seed=seed, num_inference_steps=steps, avg_diff=avg_diff)
else:
for i in range(interm_steps):
cur_scale = low_scale + (high_scale - low_scale) * i / (steps - 1)
image = clip_slider.generate(prompt,
#guidance_scale=guidance_scale,
scale=cur_scale, seed=seed, num_inference_steps=steps, avg_diff=avg_diff)
images.append(image)
canvas = Image.new('RGB', (256*interm_steps, 256))
for i, im in enumerate(images):
canvas.paste(im.resize((256,256)), (256 * i, 0))
return export_to_gif(images, "clip.gif", fps=5), canvas
def reset_recalc_directions():
return True
css = '''
#group {
position: relative;
width: 600px; /* Increased width */
height: 600px; /* Increased height */
margin-bottom: 20px;
background-color: white;
}
#x {
position: absolute;
bottom: 20px; /* Moved further down */
left: 30px; /* Adjusted left margin */
width: 540px; /* Increased width to match the new container size */
}
#y {
position: absolute;
bottom: 200px; /* Increased bottom margin to ensure proper spacing from #x */
left: 20px; /* Adjusted left margin */
width: 540px; /* Increased width to match the new container size */
transform: rotate(-90deg);
transform-origin: left bottom;
}
#image_out {
position: absolute;
width: 80%; /* Adjust width as needed */
right: 10px;
top: 10px; /* Increased top margin to clear space occupied by #x */
}
'''
intro = """
<div style="display: flex;align-items: center;justify-content: center">
<img src="https://huggingface.co/spaces/LatentNavigation/latentnavigation-flux/resolve/main/Group 4-16.png" width="100" style="display: inline-block">
<h1 style="margin-left: 12px;text-align: center;margin-bottom: 7px;display: inline-block">Latent Navigation</h1>
</div>
<div style="display: flex;align-items: center;justify-content: center">
<h3 style="display: inline-block;margin-left: 10px;margin-top: 6px;font-weight: 500">Exploring CLIP text space with FLUX.1 schnell 🪐</h3>
</div>
<p style="font-size: 0.95rem;margin: 0rem;line-height: 1.2em;margin-top:1em;display: inline-block">
<a href="https://github.com/linoytsaban/semantic-sliders" target="_blank">code</a>
|
<a href="https://huggingface.co/spaces/LatentNavigation/latentnavigation-flux?duplicate=true" target="_blank" style="
display: inline-block;
">
<img style="margin-top: -1em;margin-bottom: 0em;position: absolute;" src="https://bit.ly/3CWLGkA" alt="Duplicate Space"></a>
</p>
"""
with gr.Blocks() as demo:
gr.HTML(intro)
x_concept_1 = gr.State("")
x_concept_2 = gr.State("")
# y_concept_1 = gr.State("")
# y_concept_2 = gr.State("")
avg_diff_x = gr.State()
#avg_diff_y = gr.State()
recalc_directions = gr.State(False)
#with gr.Tab("text2image"):
with gr.Row():
with gr.Column():
with gr.Row():
concept_1 = gr.Textbox(label="A concept to compare")
concept_2 = gr.Textbox(label="Concept to compare")
#slider_x = gr.Dropdown(label="Slider concept range", allow_custom_value=True, multiselect=True, max_choices=2)
#slider_y = gr.Dropdown(label="Slider Y concept range", allow_custom_value=True, multiselect=True, max_choices=2)
prompt = gr.Textbox(label="Prompt")
x = gr.Slider(minimum=0, value=1.25, step=0.1, maximum=2.5, info="the strength to scale in each direction")
submit = gr.Button("find directions")
with gr.Column():
with gr.Group(elem_id="group"):
#y = gr.Slider(minimum=-10, value=0, maximum=10, elem_id="y", interactive=False)
output_image = gr.Image(elem_id="image_out")
image_seq = gr.Image()
# with gr.Row():
# generate_butt = gr.Button("generate")
with gr.Accordion(label="advanced options", open=False):
iterations = gr.Slider(label = "num iterations", minimum=0, value=200, maximum=400)
steps = gr.Slider(label = "num inference steps", minimum=1, value=4, maximum=10)
interm_steps = gr.Slider(label = "num of intermediate images", minimum=1, value=5, maximum=65)
guidance_scale = gr.Slider(
label="Guidance scale",
minimum=0.1,
maximum=10.0,
step=0.1,
value=5,
)
seed = gr.Slider(minimum=0, maximum=np.iinfo(np.int32).max, label="Seed", interactive=True, randomize=True)
# with gr.Tab(label="image2image"):
# with gr.Row():
# with gr.Column():
# image = gr.ImageEditor(type="pil", image_mode="L", crop_size=(512, 512))
# slider_x_a = gr.Dropdown(label="Slider X concept range", allow_custom_value=True, multiselect=True, max_choices=2)
# slider_y_a = gr.Dropdown(label="Slider X concept range", allow_custom_value=True, multiselect=True, max_choices=2)
# img2img_type = gr.Radio(["controlnet canny", "ip adapter"], label="", info="", visible=False, value="controlnet canny")
# prompt_a = gr.Textbox(label="Prompt")
# submit_a = gr.Button("Submit")
# with gr.Column():
# with gr.Group(elem_id="group"):
# x_a = gr.Slider(minimum=-10, value=0, maximum=10, elem_id="x", interactive=False)
# y_a = gr.Slider(minimum=-10, value=0, maximum=10, elem_id="y", interactive=False)
# output_image_a = gr.Image(elem_id="image_out")
# with gr.Row():
# generate_butt_a = gr.Button("generate")
# with gr.Accordion(label="advanced options", open=False):
# iterations_a = gr.Slider(label = "num iterations", minimum=0, value=200, maximum=300)
# steps_a = gr.Slider(label = "num inference steps", minimum=1, value=8, maximum=30)
# guidance_scale_a = gr.Slider(
# label="Guidance scale",
# minimum=0.1,
# maximum=10.0,
# step=0.1,
# value=5,
# )
# controlnet_conditioning_scale = gr.Slider(
# label="controlnet conditioning scale",
# minimum=0.5,
# maximum=5.0,
# step=0.1,
# value=0.7,
# )
# ip_adapter_scale = gr.Slider(
# label="ip adapter scale",
# minimum=0.5,
# maximum=5.0,
# step=0.1,
# value=0.8,
# visible=False
# )
# seed_a = gr.Slider(minimum=0, maximum=np.iinfo(np.int32).max, label="Seed", interactive=True, randomize=True)
# submit.click(fn=generate,
# inputs=[slider_x, slider_y, prompt, seed, iterations, steps, guidance_scale, x_concept_1, x_concept_2, y_concept_1, y_concept_2, avg_diff_x, avg_diff_y],
# outputs=[x, y, x_concept_1, x_concept_2, y_concept_1, y_concept_2, avg_diff_x, avg_diff_y, output_image])
submit.click(fn=generate,
inputs=[concept_1, concept_2, x, prompt, seed, recalc_directions, iterations, steps, interm_steps, guidance_scale, x_concept_1, x_concept_2, avg_diff_x],
outputs=[x, x_concept_1, x_concept_2, avg_diff_x, output_image, image_seq])
iterations.change(fn=reset_recalc_directions, outputs=[recalc_directions])
seed.change(fn=reset_recalc_directions, outputs=[recalc_directions])
x.release(fn=update_scales, inputs=[x, prompt, seed, steps, interm_steps, guidance_scale, avg_diff_x], outputs=[output_image, image_seq], trigger_mode='always_last')
# generate_butt_a.click(fn=update_scales, inputs=[x_a,y_a, prompt_a, seed_a, steps_a, guidance_scale_a, avg_diff_x, avg_diff_y, img2img_type, image, controlnet_conditioning_scale, ip_adapter_scale], outputs=[output_image_a])
# submit_a.click(fn=generate,
# inputs=[slider_x_a, slider_y_a, prompt_a, seed_a, iterations_a, steps_a, guidance_scale_a, x_concept_1, x_concept_2, y_concept_1, y_concept_2, avg_diff_x, avg_diff_y, img2img_type, image, controlnet_conditioning_scale, ip_adapter_scale],
# outputs=[x_a, y_a, x_concept_1, x_concept_2, y_concept_1, y_concept_2, avg_diff_x, avg_diff_y, output_image_a])
if __name__ == "__main__":
demo.launch() |