File size: 1,791 Bytes
9abed3a 43dcf13 e085476 14f5c56 24668a8 4393529 9abed3a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 |
rom flask import Flask, jsonify, render_template, request, make_response
import transformers
import torch
from torch import nn
import re
import numpy as np
import pandas as pd
from collections import OrderedDict
# import requests
# from bs4 import BeautifulSoup
app = Flask(__name__)
# create a python dictionary for your models d = {<key>: <value>, <key>: <value>, ..., <key>: <value>}
dictOfModels = {"BERT" : transformers.pipeline('sentiment-analysis', model="nlptown/bert-base-multilingual-uncased-sentiment")}
# create a list of keys to use them in the select part of the html code
listOfKeys = []
for key in dictOfModels :
listOfKeys.append(key)
def get_prediction(message,model):
# inference
results = model(message)
return results
@app.route('/', methods=['GET'])
def get():
# in the select we will have each key of the list in option
return render_template("home.html", len = len(listOfKeys), listOfKeys = listOfKeys)
@app.route('/', methods=['POST'])
def predict():
message = "This is good movies" #request.form['message']
# choice of the model
results = get_prediction(message, dictOfModels['RoBERTa') # get_prediction(message, dictOfModels['request.form.get("model_choice")'])
print(f'User selected model : {request.form.get("model_choice")}')
my_prediction = f'The feeling of this text is {results[0]["label"]} with probability of {results[0]["score"]*100}%.'
return render_template('result.html', text = f'{message}', prediction = my_prediction)
# @app.route('/')
# def home():
# print(1)
# return {'key':"Hello HuggingFace! Successfully deployed. "}
# # model = load_checkpoint('checkpoint.pth')
# # print(2)
# # res = sample(model, obj.maxlen, 'ap')
# # print(3)
# # return {'key':res} |