lakshya-raj's picture
v3.0.2-Code fix and triage
fb46ba0
import gradio as gr
# import numpy as np
import torch
import requests
# from PIL import Image
from torchvision import transforms
model = torch.hub.load('pytorch/vision:v0.6.0', 'resnet18', pretrained=True).eval()
# Download human-readable labels for ImageNet.
response = requests.get("https://git.io/JJkYN")
labels = response.text.split("\n")
# def sepia(input_img):
# sepia_filter = np.array([
# [0.393, 0.769, 0.189],
# [0.349, 0.686, 0.168],
# [0.272, 0.534, 0.131]
# ])
# sepia_img = input_img.dot(sepia_filter.T)
# sepia_img /= sepia_img.max()
# return sepia_img
# def greet(name):
# return "Hello " + name + "!!"
def predict(inp):
inp = transforms.ToTensor()(inp).unsqueeze(0)
with torch.no_grad():
prediction = torch.nn.functional.softmax(model(inp)[0], dim=0)
confidences = {labels[i]: float(prediction[i]) for i in range(1000)}
return confidences
# demo = gr.Interface(fn=sepia, inputs="image", outputs="image")
demo = gr.Interface(fn=predict,
inputs=gr.inputs.Image(type="pil"),
outputs=gr.outputs.Label(num_top_classes=3),
examples=["lion.jpg", "cheetah.jpg"])
demo.launch()
# iface = gr.Interface(fn=greet, inputs="text", outputs="text")
# iface.launch()