import gradio as gr | |
# import numpy as np | |
import torch | |
import requests | |
# from PIL import Image | |
from torchvision import transforms | |
model = torch.hub.load('pytorch/vision:v0.6.0', 'resnet18', pretrained=True).eval() | |
# Download human-readable labels for ImageNet. | |
response = requests.get("https://git.io/JJkYN") | |
labels = response.text.split("\n") | |
# def sepia(input_img): | |
# sepia_filter = np.array([ | |
# [0.393, 0.769, 0.189], | |
# [0.349, 0.686, 0.168], | |
# [0.272, 0.534, 0.131] | |
# ]) | |
# sepia_img = input_img.dot(sepia_filter.T) | |
# sepia_img /= sepia_img.max() | |
# return sepia_img | |
# def greet(name): | |
# return "Hello " + name + "!!" | |
def predict(inp): | |
inp = transforms.ToTensor()(inp).unsqueeze(0) | |
with torch.no_grad(): | |
prediction = torch.nn.functional.softmax(model(inp)[0], dim=0) | |
confidences = {labels[i]: float(prediction[i]) for i in range(1000)} | |
return confidences | |
# demo = gr.Interface(fn=sepia, inputs="image", outputs="image") | |
demo = gr.Interface(fn=predict, | |
inputs=gr.inputs.Image(type="pil"), | |
outputs=gr.outputs.Label(num_top_classes=3), | |
examples=["lion.jpg", "cheetah.jpg"]) | |
demo.launch() | |
# iface = gr.Interface(fn=greet, inputs="text", outputs="text") | |
# iface.launch() |