Spaces:
Runtime error
Runtime error
performance
Browse files- app.py +20 -13
- requirements.txt +1 -0
app.py
CHANGED
@@ -2,27 +2,33 @@ from PIL import Image
|
|
2 |
import gradio as gr
|
3 |
from diffusers import StableDiffusionControlNetPipeline, ControlNetModel, UniPCMultistepScheduler
|
4 |
import torch
|
|
|
5 |
|
6 |
-
controlnet = ControlNetModel.from_pretrained("ioclab/control_v1p_sd15_brightness", torch_dtype=torch.
|
7 |
|
8 |
pipe = StableDiffusionControlNetPipeline.from_pretrained(
|
9 |
-
"runwayml/stable-diffusion-v1-5", controlnet=controlnet, torch_dtype=torch.
|
10 |
)
|
11 |
|
12 |
pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config)
|
13 |
|
14 |
-
|
15 |
pipe.enable_model_cpu_offload()
|
16 |
-
|
17 |
|
18 |
def infer(prompt, negative_prompt, conditioning_image, num_inference_steps, size, guidance_scale, seed):
|
19 |
|
20 |
conditioning_image = Image.fromarray(conditioning_image)
|
21 |
conditioning_image = conditioning_image.convert('L')
|
22 |
|
23 |
-
|
|
|
|
|
|
|
|
|
|
|
24 |
|
25 |
-
|
26 |
prompt,
|
27 |
conditioning_image,
|
28 |
height=size,
|
@@ -32,9 +38,9 @@ def infer(prompt, negative_prompt, conditioning_image, num_inference_steps, size
|
|
32 |
negative_prompt=negative_prompt,
|
33 |
guidance_scale=guidance_scale,
|
34 |
controlnet_conditioning_scale=1.0,
|
35 |
-
).images
|
36 |
|
37 |
-
return
|
38 |
|
39 |
with gr.Blocks() as demo:
|
40 |
gr.Markdown(
|
@@ -72,22 +78,23 @@ with gr.Blocks() as demo:
|
|
72 |
label='Guidance Scale',
|
73 |
minimum=0.1,
|
74 |
maximum=30.0,
|
75 |
-
value=
|
76 |
step=0.1
|
77 |
)
|
78 |
seed = gr.Slider(
|
79 |
label='Seed',
|
|
|
80 |
minimum=-1,
|
81 |
maximum=2147483647,
|
82 |
step=1,
|
83 |
-
randomize=True
|
84 |
)
|
85 |
submit_btn = gr.Button(
|
86 |
value="Submit",
|
87 |
variant="primary"
|
88 |
)
|
89 |
with gr.Column(min_width=300):
|
90 |
-
output = gr.
|
91 |
label="Result",
|
92 |
)
|
93 |
|
@@ -102,8 +109,8 @@ with gr.Blocks() as demo:
|
|
102 |
examples=[
|
103 |
["a painting of a village in the mountains", "monochrome", "./conditioning_images/conditioning_image_1.jpg"],
|
104 |
["three people walking in an alleyway with hats and pants", "monochrome", "./conditioning_images/conditioning_image_2.jpg"],
|
105 |
-
["an anime character
|
106 |
-
["white object standing on
|
107 |
],
|
108 |
inputs=[
|
109 |
prompt, negative_prompt, conditioning_image
|
|
|
2 |
import gradio as gr
|
3 |
from diffusers import StableDiffusionControlNetPipeline, ControlNetModel, UniPCMultistepScheduler
|
4 |
import torch
|
5 |
+
torch.backends.cuda.matmul.allow_tf32 = True
|
6 |
|
7 |
+
controlnet = ControlNetModel.from_pretrained("ioclab/control_v1p_sd15_brightness", torch_dtype=torch.float16, use_safetensors=True)
|
8 |
|
9 |
pipe = StableDiffusionControlNetPipeline.from_pretrained(
|
10 |
+
"runwayml/stable-diffusion-v1-5", controlnet=controlnet, torch_dtype=torch.float16,
|
11 |
)
|
12 |
|
13 |
pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config)
|
14 |
|
15 |
+
pipe.enable_xformers_memory_efficient_attention()
|
16 |
pipe.enable_model_cpu_offload()
|
17 |
+
pipe.enable_attention_slicing()
|
18 |
|
19 |
def infer(prompt, negative_prompt, conditioning_image, num_inference_steps, size, guidance_scale, seed):
|
20 |
|
21 |
conditioning_image = Image.fromarray(conditioning_image)
|
22 |
conditioning_image = conditioning_image.convert('L')
|
23 |
|
24 |
+
g_cpu = torch.Generator()
|
25 |
+
|
26 |
+
if seed == -1:
|
27 |
+
generator = g_cpu.manual_seed(g_cpu.seed())
|
28 |
+
else:
|
29 |
+
generator = g_cpu.manual_seed(seed)
|
30 |
|
31 |
+
output_images = pipe(
|
32 |
prompt,
|
33 |
conditioning_image,
|
34 |
height=size,
|
|
|
38 |
negative_prompt=negative_prompt,
|
39 |
guidance_scale=guidance_scale,
|
40 |
controlnet_conditioning_scale=1.0,
|
41 |
+
).images
|
42 |
|
43 |
+
return output_images
|
44 |
|
45 |
with gr.Blocks() as demo:
|
46 |
gr.Markdown(
|
|
|
78 |
label='Guidance Scale',
|
79 |
minimum=0.1,
|
80 |
maximum=30.0,
|
81 |
+
value=7.0,
|
82 |
step=0.1
|
83 |
)
|
84 |
seed = gr.Slider(
|
85 |
label='Seed',
|
86 |
+
value=-1,
|
87 |
minimum=-1,
|
88 |
maximum=2147483647,
|
89 |
step=1,
|
90 |
+
# randomize=True
|
91 |
)
|
92 |
submit_btn = gr.Button(
|
93 |
value="Submit",
|
94 |
variant="primary"
|
95 |
)
|
96 |
with gr.Column(min_width=300):
|
97 |
+
output = gr.Gallery(
|
98 |
label="Result",
|
99 |
)
|
100 |
|
|
|
109 |
examples=[
|
110 |
["a painting of a village in the mountains", "monochrome", "./conditioning_images/conditioning_image_1.jpg"],
|
111 |
["three people walking in an alleyway with hats and pants", "monochrome", "./conditioning_images/conditioning_image_2.jpg"],
|
112 |
+
["an anime character, natural skin", "monochrome", "./conditioning_images/conditioning_image_3.jpg"],
|
113 |
+
["white object standing on colorful ground", "monochrome", "./conditioning_images/conditioning_image_4.jpg"],
|
114 |
],
|
115 |
inputs=[
|
116 |
prompt, negative_prompt, conditioning_image
|
requirements.txt
CHANGED
@@ -3,4 +3,5 @@ accelerate
|
|
3 |
diffusers
|
4 |
transformers
|
5 |
torch
|
|
|
6 |
safetensors
|
|
|
3 |
diffusers
|
4 |
transformers
|
5 |
torch
|
6 |
+
xformers
|
7 |
safetensors
|