Spaces:
Runtime error
Runtime error
# Copyright (c) 2021 Mobvoi Inc. (authors: Binbin Zhang) | |
# 2024 Alibaba Inc (authors: Xiang Lyu) | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import random | |
import json | |
import math | |
from functools import partial | |
import torch | |
import torch.distributed as dist | |
from torch.utils.data import IterableDataset | |
from cosyvoice.utils.file_utils import read_lists, read_json_lists | |
class Processor(IterableDataset): | |
def __init__(self, source, f, *args, **kw): | |
assert callable(f) | |
self.source = source | |
self.f = f | |
self.args = args | |
self.kw = kw | |
def set_epoch(self, epoch): | |
self.source.set_epoch(epoch) | |
def __iter__(self): | |
""" Return an iterator over the source dataset processed by the | |
given processor. | |
""" | |
assert self.source is not None | |
assert callable(self.f) | |
return self.f(iter(self.source), *self.args, **self.kw) | |
def apply(self, f): | |
assert callable(f) | |
return Processor(self, f, *self.args, **self.kw) | |
class DistributedSampler: | |
def __init__(self, shuffle=True, partition=True): | |
self.epoch = -1 | |
self.update() | |
self.shuffle = shuffle | |
self.partition = partition | |
def update(self): | |
assert dist.is_available() | |
if dist.is_initialized(): | |
self.rank = dist.get_rank() | |
self.world_size = dist.get_world_size() | |
else: | |
self.rank = 0 | |
self.world_size = 1 | |
worker_info = torch.utils.data.get_worker_info() | |
if worker_info is None: | |
self.worker_id = 0 | |
self.num_workers = 1 | |
else: | |
self.worker_id = worker_info.id | |
self.num_workers = worker_info.num_workers | |
return dict(rank=self.rank, | |
world_size=self.world_size, | |
worker_id=self.worker_id, | |
num_workers=self.num_workers) | |
def set_epoch(self, epoch): | |
self.epoch = epoch | |
def sample(self, data): | |
""" Sample data according to rank/world_size/num_workers | |
Args: | |
data(List): input data list | |
Returns: | |
List: data list after sample | |
""" | |
data = list(range(len(data))) | |
# force datalist even | |
if self.partition: | |
if self.shuffle: | |
random.Random(self.epoch).shuffle(data) | |
if len(data) < self.world_size: | |
data = data * math.ceil(self.world_size / len(data)) | |
data = data[:self.world_size] | |
data = data[self.rank::self.world_size] | |
if len(data) < self.num_workers: | |
data = data * math.ceil(self.num_workers / len(data)) | |
data = data[:self.num_workers] | |
data = data[self.worker_id::self.num_workers] | |
return data | |
class DataList(IterableDataset): | |
def __init__(self, lists, shuffle=True, partition=True): | |
self.lists = lists | |
self.sampler = DistributedSampler(shuffle, partition) | |
def set_epoch(self, epoch): | |
self.sampler.set_epoch(epoch) | |
def __iter__(self): | |
sampler_info = self.sampler.update() | |
indexes = self.sampler.sample(self.lists) | |
for index in indexes: | |
data = dict(src=self.lists[index]) | |
data.update(sampler_info) | |
yield data | |
def Dataset(data_list_file, | |
data_pipeline, | |
mode='train', | |
shuffle=True, | |
partition=True, | |
tts_file='', | |
prompt_utt2data=''): | |
""" Construct dataset from arguments | |
We have two shuffle stage in the Dataset. The first is global | |
shuffle at shards tar/raw file level. The second is global shuffle | |
at training samples level. | |
Args: | |
data_type(str): raw/shard | |
tokenizer (BaseTokenizer): tokenizer to tokenize | |
partition(bool): whether to do data partition in terms of rank | |
""" | |
assert mode in ['train', 'inference'] | |
lists = read_lists(data_list_file) | |
# import pdb | |
# pdb.set_trace() | |
if mode == 'inference': | |
with open(tts_file) as f: | |
tts_data = json.load(f) | |
utt2lists = read_json_lists(prompt_utt2data) | |
# filter unnecessary file in inference mode | |
lists = list(set([utt2lists[utt] for utt in tts_data.keys() if utt2lists[utt] in lists])) | |
dataset = DataList(lists,shuffle=shuffle,partition=partition) | |
if mode == 'inference': | |
# map partial arg tts_data in inference mode | |
data_pipeline[0] = partial(data_pipeline[0], tts_data=tts_data) | |
for func in data_pipeline: | |
dataset = Processor(dataset, func, mode=mode) | |
return dataset | |