Spaces:
Running
on
Zero
Running
on
Zero
File size: 52,138 Bytes
76d8455 2173a68 6345c65 038856e 2173a68 c0ef025 038856e 2173a68 038856e 0ed4d2b 038856e 92c9cf2 038856e c85b395 038856e 546ca50 92c9cf2 038856e 002ecf1 038856e 2173a68 038856e 2173a68 839cde7 2173a68 038856e 2173a68 038856e 2173a68 78647e8 038856e 2173a68 038856e 2173a68 038856e 2173a68 038856e 2173a68 038856e 2173a68 038856e 2173a68 038856e 2173a68 038856e 2173a68 038856e 2173a68 038856e 2173a68 038856e 2173a68 038856e 2173a68 038856e 2173a68 038856e 2173a68 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 |
import spaces
import os
import subprocess
subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)
import gradio as gr
import torch
import base64
import io
from PIL import Image
from transformers import (
LlavaNextProcessor, LlavaNextForConditionalGeneration,
T5EncoderModel, T5Tokenizer
)
from transformers import (
AutoProcessor, AutoModelForCausalLM, GenerationConfig,
T5EncoderModel, T5Tokenizer
)
from diffusers import AutoencoderKL, FlowMatchEulerDiscreteScheduler, FlowMatchHeunDiscreteScheduler, FluxPipeline
from onediffusion.diffusion.pipelines.onediffusion import OneDiffusionPipeline
from onediffusion.models.denoiser.nextdit import NextDiT
from onediffusion.dataset.utils import get_closest_ratio, ASPECT_RATIO_512
from typing import List, Optional
import matplotlib
import numpy as np
import cv2
import argparse
from PIL import Image
import csv
import ast
from gradio import components, utils
from typing import List, Any
from types import MethodType
os.environ["GRADIO_EXAMPLES_CACHE"] = "./assets/gradio_cached_examples"
# Task-specific tokens
TASK2SPECIAL_TOKENS = {
"text2image": "[[text2image]]",
"deblurring": "[[deblurring]]",
"inpainting": "[[image_inpainting]]",
"canny": "[[canny2image]]",
"depth2image": "[[depth2image]]",
"hed2image": "[[hed2img]]",
"pose2image": "[[pose2image]]",
"semanticmap2image": "[[semanticmap2image]]",
"boundingbox2image": "[[boundingbox2image]]",
"image_editing": "[[image_editing]]",
"faceid": "[[faceid]]",
"multiview": "[[multiview]]",
"subject_driven": "[[subject_driven]]"
}
NEGATIVE_PROMPT = "monochrome, greyscale, low-res, bad anatomy, bad hands, text, error, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality, normal quality, jpeg artifacts, signature, watermark, username, blurry, artist name, poorly drawn, bad anatomy, wrong anatomy, extra limb, missing limb, floating limbs, disconnected limbs, mutation, mutated, ugly, disgusting, blurry, amputation"
class LlavaCaptionProcessor:
def __init__(self):
model_name = "llava-hf/llama3-llava-next-8b-hf"
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
dtype = torch.float16 if torch.cuda.is_available() else torch.float32
self.processor = LlavaNextProcessor.from_pretrained(model_name)
self.model = LlavaNextForConditionalGeneration.from_pretrained(
model_name, torch_dtype=dtype, low_cpu_mem_usage=True
).to(device)
self.SPECIAL_TOKENS = "assistant\n\n\n"
def generate_response(self, image: Image.Image, msg: str) -> str:
conversation = [{"role": "user", "content": [{"type": "image"}, {"type": "text", "text": msg}]}]
with torch.no_grad():
prompt = self.processor.apply_chat_template(conversation, add_generation_prompt=True)
inputs = self.processor(prompt, image, return_tensors="pt").to(self.model.device)
output = self.model.generate(**inputs, max_new_tokens=200)
response = self.processor.decode(output[0], skip_special_tokens=True)
return response.split(msg)[-1].strip()[len(self.SPECIAL_TOKENS):]
def process(self, images: List[Image.Image], msg: str = None) -> List[str]:
if msg is None:
msg = f"Describe the contents of the photo in 150 words or fewer."
try:
return [self.generate_response(img, msg) for img in images]
except Exception as e:
print(f"Error in process: {str(e)}")
raise
class MolmoCaptionProcessor:
def __init__(self):
pretrained_model_name = 'cyan2k/molmo-7B-D-bnb-4bit'
self.processor = AutoProcessor.from_pretrained(
pretrained_model_name,
trust_remote_code=True,
torch_dtype='auto',
device_map='auto'
)
self.model = AutoModelForCausalLM.from_pretrained(
pretrained_model_name,
trust_remote_code=True,
torch_dtype='auto',
device_map='auto'
)
@spaces.GPU
def generate_response(self, image: Image.Image, msg: str) -> str:
inputs = self.processor.process(
images=[image],
text=msg
)
# Move inputs to the correct device and make a batch of size 1
inputs = {k: v.to(self.model.device).unsqueeze(0) for k, v in inputs.items()}
# Generate output
output = self.model.generate_from_batch(
inputs,
GenerationConfig(max_new_tokens=250, stop_strings="<|endoftext|>"),
tokenizer=self.processor.tokenizer
)
# Only get generated tokens and decode them to text
generated_tokens = output[0, inputs['input_ids'].size(1):]
return self.processor.tokenizer.decode(generated_tokens, skip_special_tokens=True).strip()
def process(self, images: List[Image.Image], msg: str = None) -> List[str]:
if msg is None:
msg = f"Describe the contents of the photo in 150 words or fewer."
try:
return [self.generate_response(img, msg) for img in images]
except Exception as e:
print(f"Error in process: {str(e)}")
raise
class PlaceHolderCaptionProcessor:
def __init__(self):
pass
def generate_response(self, image: Image.Image, msg: str) -> str:
return ""
def process(self, images: List[Image.Image], msg: str = None) -> List[str]:
return [""] * len(images)
def initialize_models(captioner_name):
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
pipeline = OneDiffusionPipeline.from_pretrained("lehduong/OneDiffusion").to(device=device, dtype=torch.bfloat16)
if captioner_name == 'molmo':
captioner = MolmoCaptionProcessor()
elif captioner_name == 'llava':
captioner = LlavaCaptionProcessor()
else:
captioner = PlaceHolderCaptionProcessor()
return pipeline, captioner
def colorize_depth_maps(
depth_map, min_depth, max_depth, cmap="Spectral", valid_mask=None
):
"""
Colorize depth maps with reversed colors.
"""
assert len(depth_map.shape) >= 2, "Invalid dimension"
if isinstance(depth_map, torch.Tensor):
depth = depth_map.detach().squeeze().numpy()
elif isinstance(depth_map, np.ndarray):
depth = depth_map.copy().squeeze()
# reshape to [ (B,) H, W ]
if depth.ndim < 3:
depth = depth[np.newaxis, :, :]
# Normalize depth values to [0, 1]
depth = ((depth - min_depth) / (max_depth - min_depth)).clip(0, 1)
# Invert the depth values to reverse the colors
depth = 1 - depth
# Use the colormap
cm = matplotlib.colormaps[cmap]
img_colored_np = cm(depth, bytes=False)[:, :, :, 0:3] # values from 0 to 1
img_colored_np = np.rollaxis(img_colored_np, 3, 1)
if valid_mask is not None:
if isinstance(depth_map, torch.Tensor):
valid_mask = valid_mask.detach().numpy()
valid_mask = valid_mask.squeeze() # [H, W] or [B, H, W]
if valid_mask.ndim < 3:
valid_mask = valid_mask[np.newaxis, np.newaxis, :, :]
else:
valid_mask = valid_mask[:, np.newaxis, :, :]
valid_mask = np.repeat(valid_mask, 3, axis=1)
img_colored_np[~valid_mask] = 0
if isinstance(depth_map, torch.Tensor):
img_colored = torch.from_numpy(img_colored_np).float()
elif isinstance(depth_map, np.ndarray):
img_colored = img_colored_np
return img_colored
def format_prompt(task_type: str, captions: List[str]) -> str:
if not captions:
return ""
if task_type == "faceid":
img_prompts = [f"[[img{i}]] {caption}" for i, caption in enumerate(captions, start=1)]
return f"[[faceid]] [[img0]] insert/your/caption/here {' '.join(img_prompts)}"
elif task_type == "image_editing":
return f"[[image_editing]] insert/your/instruction/here"
elif task_type == "semanticmap2image":
return f"[[semanticmap2image]] <#00ffff Cyan mask: insert/concept/to/segment/here> {captions[0]}"
elif task_type == "boundingbox2image":
return f"[[boundingbox2image]] <#00ffff Cyan boundingbox: insert/concept/to/segment/here> {captions[0]}"
elif task_type == "multiview":
img_prompts = captions[0]
return f"[[multiview]] {img_prompts}"
elif task_type == "subject_driven":
return f"[[subject_driven]] <item: insert/item/here> [[img0]] insert/your/target/caption/here [[img1]] {captions[0]}"
else:
return f"{TASK2SPECIAL_TOKENS[task_type]} {captions[0]}"
def update_prompt(images: List[Image.Image], task_type: str, custom_msg: str = None):
if not images:
return format_prompt(task_type, []), "Please upload at least one image!"
try:
captions = captioner.process(images, custom_msg)
if not captions:
return "", "No valid images found!"
prompt = format_prompt(task_type, captions)
return prompt, f"Generated {len(captions)} captions successfully!"
except Exception as e:
return "", f"Error generating captions: {str(e)}"
@spaces.GPU
def generate_image(images: List[Image.Image], prompt: str, negative_prompt: str, num_inference_steps: int, guidance_scale: float,
denoise_mask: List[str], task_type: str, azimuth: str, elevation: str, distance: str, focal_length: float,
height: int = 1024, width: int = 1024, scale_factor: float = 1.0, scale_watershed: float = 1.0,
noise_scale: float = None, progress=gr.Progress()):
try:
img2img_kwargs = {
'prompt': prompt,
'negative_prompt': negative_prompt,
'num_inference_steps': num_inference_steps,
'guidance_scale': guidance_scale,
'height': height,
'width': width,
'forward_kwargs': {
'scale_factor': scale_factor,
'scale_watershed': scale_watershed
},
'noise_scale': noise_scale # Added noise_scale here
}
if task_type == 'multiview':
# Parse azimuth, elevation, and distance into lists, allowing 'None' values
azimuths = [float(a.strip()) if a.strip().lower() != 'none' else None for a in azimuth.split(',')] if azimuth else []
elevations = [float(e.strip()) if e.strip().lower() != 'none' else None for e in elevation.split(',')] if elevation else []
distances = [float(d.strip()) if d.strip().lower() != 'none' else None for d in distance.split(',')] if distance else []
num_views = max(len(images), len(azimuths), len(elevations), len(distances))
if num_views == 0:
return None, "At least one image or camera parameter must be provided."
total_components = []
for i in range(num_views):
total_components.append(f"image_{i}")
total_components.append(f"camera_pose_{i}")
denoise_mask_int = [1 if comp in denoise_mask else 0 for comp in total_components]
if len(denoise_mask_int) != len(total_components):
return None, f"Denoise mask length mismatch: expected {len(total_components)} components."
# Pad the input lists to num_views length
images_padded = images + [] * (num_views - len(images)) # Do not add None
azimuths_padded = azimuths + [None] * (num_views - len(azimuths))
elevations_padded = elevations + [None] * (num_views - len(elevations))
distances_padded = distances + [None] * (num_views - len(distances))
# Prepare values
img2img_kwargs.update({
'image': images_padded,
'multiview_azimuths': azimuths_padded,
'multiview_elevations': elevations_padded,
'multiview_distances': distances_padded,
'multiview_focal_length': focal_length, # Pass focal_length here
'is_multiview': True,
'denoise_mask': denoise_mask_int,
# 'predict_camera_poses': True,
})
else:
total_components = ["image_0"] + [f"image_{i+1}" for i in range(len(images))]
denoise_mask_int = [1 if comp in denoise_mask else 0 for comp in total_components]
if len(denoise_mask_int) != len(total_components):
return None, f"Denoise mask length mismatch: expected {len(total_components)} components."
img2img_kwargs.update({
'image': images,
'denoise_mask': denoise_mask_int
})
progress(0, desc="Generating image...")
if task_type == 'text2image':
output = pipeline(
prompt=prompt,
negative_prompt=negative_prompt,
num_inference_steps=num_inference_steps,
guidance_scale=guidance_scale,
height=height,
width=width,
scale_factor=scale_factor,
scale_watershed=scale_watershed,
noise_scale=noise_scale # Added noise_scale here
)
else:
output = pipeline.img2img(**img2img_kwargs)
progress(1, desc="Done!")
# Process the output images if task is 'depth2image' and predicting depth
if task_type == 'depth2image' and denoise_mask_int[-1] == 1:
processed_images = []
for img in output.images:
depth_map = np.array(img.convert('L')) # Convert to grayscale numpy array
min_depth = depth_map.min()
max_depth = depth_map.max()
colorized = colorize_depth_maps(depth_map, min_depth, max_depth)[0]
colorized = np.transpose(colorized, (1, 2, 0))
colorized = (colorized * 255).astype(np.uint8)
img_colorized = Image.fromarray(colorized)
processed_images.append(img_colorized)
output_images = processed_images + output.images
elif task_type in ['boundingbox2image', 'semanticmap2image'] and denoise_mask_int == [0,1] and images:
# Interpolate between input and output images
processed_images = []
for input_img, output_img in zip(images, output.images):
input_img_resized = input_img.resize(output_img.size)
blended_img = Image.blend(input_img_resized, output_img, alpha=0.5)
processed_images.append(blended_img)
output_images = processed_images + output.images
else:
output_images = output.images
return output_images, "Generation completed successfully!"
except Exception as e:
return None, f"Error during generation: {str(e)}"
def update_denoise_checkboxes(images_state: List[Image.Image], task_type: str, azimuth: str, elevation: str, distance: str):
if task_type == 'multiview':
azimuths = [a.strip() for a in azimuth.split(',')] if azimuth else []
elevations = [e.strip() for e in elevation.split(',')] if elevation else []
distances = [d.strip() for d in distance.split(',')] if distance else []
images_len = len(images_state)
num_views = max(images_len, len(azimuths), len(elevations), len(distances))
if num_views == 0:
return gr.update(choices=[], value=[]), "Please provide at least one image or camera parameter."
# Pad lists to the same length
azimuths += ['None'] * (num_views - len(azimuths))
elevations += ['None'] * (num_views - len(elevations))
distances += ['None'] * (num_views - len(distances))
# Do not add None to images_state
labels = []
values = []
for i in range(num_views):
labels.append(f"image_{i}")
labels.append(f"camera_pose_{i}")
# Default behavior: condition on provided inputs, generate missing ones
if i >= images_len:
values.append(f"image_{i}")
if azimuths[i].lower() == 'none' or elevations[i].lower() == 'none' or distances[i].lower() == 'none':
values.append(f"camera_pose_{i}")
return gr.update(choices=labels, value=values)
else:
if images_state is None:
images_state = []
labels = ["image_0"] + [f"image_{i+1}" for i in range(len(images_state))]
values = ["image_0"]
return gr.update(choices=labels, value=values)
def apply_mask(images_state):
if len(images_state) < 2:
return None, "Please upload at least two images: first as the base image, second as the mask."
base_img = images_state[0]
mask_img = images_state[1]
# Convert images to arrays
base_arr = np.array(base_img)
mask_arr = np.array(mask_img)
# Convert mask to grayscale
if mask_arr.ndim == 3:
gray_mask = cv2.cvtColor(mask_arr, cv2.COLOR_RGB2GRAY)
else:
gray_mask = mask_arr
# Create a binary mask where non-black pixels are True
binary_mask = gray_mask > 10
# Define the gray color
gray_color = np.array([128, 128, 128], dtype=np.uint8)
# Apply gray color where mask is True
masked_arr = base_arr.copy()
masked_arr[binary_mask] = gray_color
masked_img = Image.fromarray(masked_arr)
return [masked_img], "Mask applied successfully!"
def process_images_for_task_type(images_state: List[Image.Image], task_type: str):
# No changes needed here since we are processing the output images
return images_state, images_state
def get_example():
# Define example configurations and save images to temporary files
examples = [
[
"Text to Image", # Example name
None, # Preview column
[], # Empty list instead of None for input images
"[[text2image]] A bipedal black cat wearing a huge oversized witch hat, a wizards robe, casting a spell,in an enchanted forest. The scene is filled with fireflies and moss on surrounding rocks and trees",
NEGATIVE_PROMPT,
50, # num_steps
4.0, # guidance_scale
["image_0"], # denoise_mask
"text2image", # task_type
"0", # azimuth
"0", # elevation
"1.5", # distance
1.3887, # focal_length
1024, # height
1024, # width
1.0, # scale_factor
1.0, # scale_watershed
1.0, # noise_scale
],
[
"ID Customization with 1 images", # Example name - new column
"./assets/examples/id_customization/chika/image_0.png", # Preview first image
[
"./assets/examples/id_customization/chika/image_0.png",
], # Input image paths
"[[faceid]] [[img0]] photo depict a female anime character with pink hair and blue eyes, sitting in a fine dining restaurant, black dress, smiling open mouth widely [[img1]] The photo depicts an anime-style cartoon character of a young woman with pink hair and blue eyes. She's wearing a black dress with white collar and cuffs, adorned with a red bow at the neckline and a red bow on the chest. A black bow tie decorates her hair. The character is standing in a classroom, with a green chalkboard featuring Asian characters visible behind her. The classroom has a white ceiling with brown trim and a window with a green curtain. The woman has a cheerful expression and appears to be in motion, as her hair is flowing. The overall scene is colorful and vibrant, capturing a moment of everyday life in an anime-inspired setting.",
NEGATIVE_PROMPT,
75, # num_steps
4.0, # guidance_scale
["image_0"], # denoise_mask
"faceid", # task_type
"0", # azimuth
"0", # elevation
"1.5", # distance
1.3887, # focal_length
576, # height
448, # width
1.0, # scale_factor
1.0, # scale_watershed
1.0, # noise_scale
],
[
"ID Customization with multiple input images", # Example name - new column
"./assets/examples/id_customization/chenhao/image_0.png", # Preview first image
[
"./assets/examples/id_customization/chenhao/image_0.png",
"./assets/examples/id_customization/chenhao/image_1.png",
"./assets/examples/id_customization/chenhao/image_2.png",
], # Input image paths
"[[faceid]] [[img0]] A woman with dark hair styled in an intricate updo, wearing a traditional orange and black outfit with elaborate gold embroidery. She has an elegant, poised expression, standing against a serene outdoor setting with classical architecture [[img1]] A young Asian woman with long dark hair and brown eyes smiles at the camera. She wears a red tank top with white flowers and green leaves. The background is blurred, with white and blue tones visible. The image has a slightly grainy quality. [[img2]] A young Asian woman in traditional attire stands against a brown background. She wears a white dress adorned with purple and green floral patterns. Her hair is styled in a bun, and she holds a small white lace umbrella with a gold handle. The image captures her elegant appearance and cultural dress. [[img3]] A woman in traditional Asian attire stands in front of a blurred building. She wears a green robe with floral designs and a black hat with lace. A man in a red robe and black hat stands behind her. The scene appears to be set in an Asian country.",
NEGATIVE_PROMPT,
50, # num_steps
4.0, # guidance_scale
["image_0"], # denoise_mask
"faceid", # task_type
"0", # azimuth
"0", # elevation
"1.5", # distance
1.3887, # focal_length
608, # height
416, # width
1.0, # scale_factor
1.0, # scale_watershed
1.0, # noise_scale
],
[
"Image to Multiview", # Example name - new column
"assets/examples/images/cat_on_table.webp", # Preview column - no image for text-to-multiview
["assets/examples/images/cat_on_table.webp"], # No input images
"[[multiview]] A cat with orange and white fur sits on a round wooden table. The cat has striking green eyes and a pink nose. Its ears are perked up, and its tail is curled around its body. The background is blurred, showing a white wall, a wooden chair, and a wooden table with a white pot and green plant. A white curtain is visible on the right side. The cat's gaze is directed slightly to the right, and its paws are white. The overall scene creates a cozy, domestic atmosphere with the cat as the central focus.",
NEGATIVE_PROMPT,
60, # num_steps
4.0, # guidance_scale
["image_1", "image_2", "image_3"], # denoise_mask
"multiview", # task_type
"0,20,40,60", # azimuth - four views
"0,0,0,0", # elevation - different angles
"1.5,1.5,1.5,1.5", # distance
1.3887, # focal_length
512, # height
512, # width
1.0, # scale_factor
1.0, # scale_watershed
1.0, # noise_scale
],
[
"Semantic to Image", # Example name - new column
"assets/examples/semantic_map/dragon_birds_woman.webp", # Preview column
["assets/examples/semantic_map/dragon_birds_woman.webp"], # Input image path
"[[semanticmap2image]] <#00ffff Cyan mask: insert/concept/to/segment/here> A woman in a red dress with gold floral patterns stands in a traditional Japanese-style building. She has black hair and wears a gold choker and earrings. Behind her, a large orange and white dragon coils around the structure. Two white birds fly near her. The building features paper windows and a wooden roof with lanterns. The scene blends traditional Japanese architecture with fantastical elements, creating a mystical atmosphere.",
NEGATIVE_PROMPT,
50, # num_steps
4.0, # guidance_scale
["image_0"], # denoise_mask
"semanticmap2image", # task_type
"0", # azimuth
"0", # elevation
"1.5", # distance
1.3887, # focal_length
672, # height
384, # width
1.0, # scale_factor
1.0, # scale_watershed
1.0, # noise_scale
],
[
"Subject driven generation", # Example name - new column
"./assets/examples/subject_driven/chill_guy.jpg", # Preview column
["./assets/examples/subject_driven/chill_guy.jpg"], # Input image path
"[[subject_driven]] <item: cartoon dog> [[img0]] a cartoon character resembling a dog, sitting on a beach. The character has a long, narrow face with a black nose and brown eyes. It's wearing a gray sweatshirt, blue jeans rolled up at the bottom, and red sneakers with white soles. it has a slight smirk on its face [[img1]] The photo features a cartoon character resembling a do. The character has a long, narrow face with a black nose and brown eyes. It's wearing a gray sweatshirt, blue jeans rolled up at the bottom, and red sneakers with white soles. The character's hands are tucked into its pockets, and it has a slight smirk on its face. The background is a solid gray color, and the image has a hand-drawn, slightly blurry quality. The character's head is turned to the left, and its body is facing forward. The overall style is simple and cartoonish, with bold lines and limited shading.",
NEGATIVE_PROMPT,
70, # num_steps
4.0, # guidance_scale
["image_0"], # denoise_mask
"subject_driven", # task_type
"0", # azimuth
"0", # elevation
"1.5", # distance
1.3887, # focal_length
512, # height
512, # width
1.0, # scale_factor
1.0, # scale_watershed
1.0, # noise_scale
],
[
"Depth to Image", # Example name - new column
"./assets/examples/depth/astronaut.webp", # Preview column
["./assets/examples/depth/astronaut.webp"], # Input image path
"[[depth2image]] The image depicts a futuristic astronaut standing on a rocky terrain with orange flowers. The astronaut is wearing a yellow suit with a helmet and is equipped with a backpack. The astronaut is looking up at a large, circular, glowing portal in the sky, which is surrounded by a halo of light. The portal is emitting a warm glow and is surrounded by a few butterflies. The sky is dark with stars, and there are distant mountains visible. The overall atmosphere of the image is one of exploration and wonder.",
NEGATIVE_PROMPT,
50, # num_steps
4.0, # guidance_scale
["image_0"], # denoise_mask
"depth2image", # task_type
"0", # azimuth
"0", # elevation
"1.5", # distance
1.3887, # focal_length
608, # height
416, # width
1.0, # scale_factor
1.0, # scale_watershed
1.0, # noise_scale
],
[
"Image to depth", # Example name - new column
"./assets/examples/images/cat.webp", # Preview column
["./assets/examples/images/cat.webp"], # Input image path
"[[depth2image]] A kitten sits in a small boat on a rainy lake. The kitten wears a pink sweater and hat with a pom-pom. It has orange and white fur, and its paws are visible. The scene is misty and atmospheric, with trees and mountains in the background.",
NEGATIVE_PROMPT,
50, # num_steps
4.0, # guidance_scale
["image_1"], # denoise_mask
"depth2image", # task_type
"0", # azimuth
"0", # elevation
"1.5", # distance
1.3887, # focal_length
512, # height
512, # width
1.0, # scale_factor
1.0, # scale_watershed
1.0, # noise_scale
],
[
"Image Editing", # Example name - new column
"assets/examples/image_editing/astronaut.webp", # Preview column
["assets/examples/image_editing/astronaut.webp"], # Input image path
"[[image_editing]] change it to winter and snowy weather",
NEGATIVE_PROMPT,
60, # num_steps
3.2, # guidance_scale
["image_0"], # denoise_mask
"image_editing", # task_type
"0", # azimuth
"0", # elevation
"1.5", # distance
1.3887, # focal_length
512, # height
512, # width
1.0, # scale_factor
1.0, # scale_watershed
1.0, # noise_scale
],
[
"Text to Multiview", # Example name - new column
None, # Preview column - no image for text-to-multiview
[], # No input images
"[[multiview]] The 3D scene features a striking black raven perched on a weathered rock in a rugged, mountainous landscape. Its glossy feathers shimmer with iridescent highlights, adding depth and realism. The background reveals a misty valley with rolling hills and a solitary stone cottage, exuding a sense of isolation and mystery. The earthy tones of the terrain, scattered with rocks and tufts of grass, contrast beautifully with the raven's dark plumage. The atmosphere feels serene yet haunting, evoking themes of solitude and nature's quiet power.",
NEGATIVE_PROMPT,
60, # num_steps
4.0, # guidance_scale
["image_0", "image_1", "image_2", "image_3"], # denoise_mask
"multiview", # task_type
"0,30,60,90", # azimuth - four views
"0,10,15,20", # elevation - different angles
"1.5,1.5,1.5,1.5", # distance
1.3887, # focal_length
512, # height
512, # width
1.0, # scale_factor
1.0, # scale_watershed
1.0, # noise_scale
],
[
"Inpainting with Black mask", # Example name - new column
"./assets/examples/inpainting/giorno.webp", # Preview column
["./assets/examples/inpainting/giorno.webp"], # Input image path
"[[image_inpainting]]",
NEGATIVE_PROMPT,
50, # num_steps
4.0, # guidance_scale
["image_0"], # denoise_mask
"image_inpainting", # task_type
"0", # azimuth
"0", # elevation
"1.5", # distance
1.3887, # focal_length
416, # height
576, # width
1.0, # scale_factor
1.0, # scale_watershed
1.0, # noise_scale
],
]
return examples
def run_for_examples(example_name, preview_image, image_paths, prompt, negative_prompt,
num_inference_steps, guidance_scale, denoise_mask, task_type,
azimuth, elevation, distance, focal_length, height, width,
scale_factor, scale_watershed, noise_scale):
try:
# Handle empty image paths or None
images_state = []
gallery_value = []
if image_paths: # Only process if image_paths is not None and not empty
if isinstance(image_paths, list) and len(image_paths) > 0:
for path in image_paths:
try:
if path is not None:
img = Image.open(path).convert('RGB')
images_state.append(img)
gallery_value.append(path)
except Exception as e:
print(f"Error loading image {path}: {str(e)}")
# Generate output images
output_images, status = generate_image(
images_state, prompt, negative_prompt, num_inference_steps, guidance_scale,
denoise_mask, task_type, azimuth, elevation, distance, focal_length,
height, width, scale_factor, scale_watershed, noise_scale
)
# For preview gallery - show actual loaded images if any
preview_images = images_state # if images_state else []
return output_images, status, gallery_value, images_state, preview_images
except Exception as e:
return None, f"Error in example generation: {str(e)}", [], [], []
def update_gallery_state(files, current_state):
"""Update image state when new files are uploaded or cleared"""
# Handle case when files is None or empty
if not files:
return [], [], [] # Return empty states for images, gallery, and preview
# Ensure files is a list
if not isinstance(files, list):
files = [files]
# Process new uploads
processed_images = []
for file in files:
try:
if isinstance(file, dict) and "name" in file: # Handle file dict from gradio
img_path = file["name"]
elif isinstance(file, str): # Handle direct file paths
img_path = file
elif isinstance(file, Image.Image): # Handle PIL Image objects
processed_images.append(file.convert('RGB'))
continue
else:
print(f"Skipping unsupported file type: {type(file)}")
continue
img_pil = Image.open(img_path).convert('RGB')
processed_images.append(img_pil)
except Exception as e:
return [], [], []
# If no images were successfully processed, return empty states
if not processed_images:
return [], [], []
# Return updated states and preview images
# processed_images for the image state
# files for the gallery state (original files)
# processed_images again for preview
return processed_images, files, processed_images
def delete_selected_images(selected_indices, images_state, gallery_state):
"""Delete selected images from gallery and state"""
if not selected_indices or not images_state:
return images_state, gallery_state, images_state, []
# Create lists of indices to keep
keep_indices = [i for i in range(len(images_state)) if i not in selected_indices]
# Update image state
updated_images = [images_state[i] for i in keep_indices]
# Update gallery state if it exists
updated_gallery = [gallery_state[i] for i in keep_indices] if gallery_state else []
return updated_images, updated_gallery, updated_images, []
def delete_all_images():
"""Delete all images"""
return [], [], [], []
if __name__ == "__main__":
parser = argparse.ArgumentParser(description='Start the Gradio demo with specified captioner.')
parser.add_argument('--captioner', type=str, choices=['molmo', 'llava', 'disable'], default='disable', help='Captioner to use: molmo, llava, disable.')
args = parser.parse_args()
# Initialize models with the specified captioner
pipeline, captioner = initialize_models(args.captioner)
with gr.Blocks(title="OneDiffusion Demo") as demo:
gr.Markdown("""
# OneDiffusion Demo without captioner
**Welcome to the OneDiffusion Demo!**
This application allows you to generate images based on your input prompts for various tasks. Here's how to use it:
1. **Select Task Type**: Choose the type of task you want to perform from the "Task Type" dropdown menu.
2. **Upload Images**: Drag and drop images directly onto the upload area, or click to select files from your device.
3. **Generate Captions**: **If you upload any images**, Click the "Generate Captions" button to format the text prompt according to chosen task. In this demo, you will **NEED** to provide the caption of each source image manually. We recommend using Molmo for captioning.
4. **Configure Generation Settings**: Expand the "Advanced Configuration" section to adjust parameters like the number of inference steps, guidance scale, image size, and more.
5. **Generate Images**: After setting your preferences, click the "Generate Image" button. The generated images will appear in the "Generated Images" gallery.
6. **Manage Images**: Use the "Delete Selected Images" or "Delete All Images" buttons to remove unwanted images from the gallery.
**Notes**:
- Check out the [Prompt Guide](https://github.com/lehduong/OneDiffusion/blob/main/PROMPT_GUIDE.md).
- For text-to-image:
+ simply enter your prompt in this format "[[text2image]] your/prompt/here" and press the "Generate Image" button.
- For boundingbox2image/semantic2image/inpainting etc tasks:
+ To perform condition-to-image such as semantic map to image, follow above steps
+ For image-to-condition e.g., image to depth, change the denoise_mask checkbox before generating images. You must UNCHECK image_0 box and CHECK image_1 box. Caption is not required for this task.
- For FaceID tasks:
+ Use 3 or 4 images if single input image does not give satisfactory results.
+ All images will be resized and center cropped to the input height and width. You should choose height and width so that faces in input images won't be cropped.
+ Model works best with close-up portrait (input and output) images.
+ If the model does not conform your text prompt, try using shorter caption for source image(s).
+ If you have non-human subjects and does not get satisfactory results, try "copying" part of caption of source images where it describes the properties of the subject e.g., a monster with red eyes, sharp teeth, etc.
- For Multiview generation:
+ The input camera elevation/azimuth ALWAYS starts with 0. If you want to generate images of azimuths 30,60,90 and elevations of 10,20,30 (wrt input image), the correct input azimuth is: `0, 30, 60, 90`; input elevation is `0,10,20,30`. The camera distance will be `1.5,1.5,1.5,1.5`
+ Only support square images (ideally in 512x512 resolution).
+ Ensure the number of elevations, azimuths, and distances are equal.
+ The model generally works well for 2-5 views (include both input and generated images). Since the model is trained with 3 views on 512x512 resolution, you might try scale_factor of [1.1; 1.5] and scale_watershed of [100; 400] for better extrapolation.
+ For better results:
1) try increasing num_inference_steps to 75-100.
2) avoid aggressively changes in target camera poses, for example to generate novel views at azimuth of 180, (simultaneously) generate 4 views with azimuth of 45, 90, 135, 180.
Enjoy creating images with OneDiffusion!
""")
with gr.Row():
with gr.Column():
images_state = gr.State([])
selected_indices_state = gr.State([])
with gr.Row():
# Replace gallery with File input
gallery = gr.File(
label="Input Images",
file_count="multiple",
type="filepath",
file_types=["image"]
)
# Add preview gallery
preview_gallery = gr.Gallery(
label="Image Preview",
show_label=True,
columns=2,
rows=2,
height="auto",
object_fit="contain"
)
with gr.Row():
delete_button = gr.Button("Delete Selected Images")
delete_all_button = gr.Button("Delete All Images")
task_type = gr.Dropdown(
choices=list(TASK2SPECIAL_TOKENS.keys()),
value="text2image",
label="Task Type"
)
captioning_message = gr.Textbox(
lines=2,
value="Describe the contents of the photo in 60 words.",
label="Custom message for captioner"
)
auto_caption_btn = gr.Button("Generate Captions")
with gr.Column():
prompt = gr.Textbox(
lines=3,
placeholder="Enter your prompt here or use auto-caption...",
label="Prompt"
)
negative_prompt = gr.Textbox(
lines=3,
value=NEGATIVE_PROMPT,
placeholder="Enter negative prompt here...",
label="Negative Prompt"
)
caption_status = gr.Textbox(label="Caption Status")
num_steps = gr.Slider(
minimum=1,
maximum=200,
value=50,
step=1,
label="Number of Inference Steps"
)
guidance_scale = gr.Slider(
minimum=0.1,
maximum=10.0,
value=4,
step=0.1,
label="Guidance Scale"
)
height = gr.Number(value=1024, label="Height")
width = gr.Number(value=1024, label="Width")
with gr.Accordion("Advanced Configuration", open=False):
with gr.Row():
denoise_mask_checkbox = gr.CheckboxGroup(
label="Denoise Mask",
choices=["image_0"],
value=["image_0"]
)
azimuth = gr.Textbox(
value="0",
label="Azimuths (degrees, comma-separated, 'None' for missing)"
)
elevation = gr.Textbox(
value="0",
label="Elevations (degrees, comma-separated, 'None' for missing)"
)
distance = gr.Textbox(
value="1.5",
label="Distances (comma-separated, 'None' for missing)"
)
focal_length = gr.Number(
value=1.3887,
label="Focal Length of camera for multiview generation"
)
scale_factor = gr.Number(value=1.0, label="Scale Factor")
scale_watershed = gr.Number(value=1.0, label="Scale Watershed")
noise_scale = gr.Number(value=1.0, label="Noise Scale") # Added noise_scale input
output_images = gr.Gallery(
label="Generated Images",
show_label=True,
columns=4,
rows=2,
height="auto",
object_fit="contain"
)
with gr.Column():
generate_btn = gr.Button("Generate Image")
# apply_mask_btn = gr.Button("Apply Mask")
status = gr.Textbox(label="Generation Status")
def update_height_width(images_state):
if images_state:
closest_ar = get_closest_ratio(
height=images_state[0].size[1],
width=images_state[0].size[0],
ratios=ASPECT_RATIO_512
)
height_val, width_val = int(closest_ar[0][0]), int(closest_ar[0][1])
else:
height_val, width_val = 1024, 1024 # Default values
return gr.update(value=height_val), gr.update(value=width_val)
# Update the image selection handler
def on_select(evt: gr.SelectData, selected_indices):
"""Handle image selection in gallery"""
if selected_indices is None:
selected_indices = []
if evt.index in selected_indices:
selected_indices.remove(evt.index)
else:
selected_indices.append(evt.index)
return selected_indices
# Connect gallery upload
gallery.upload(
fn=update_gallery_state,
inputs=[gallery, images_state],
outputs=[images_state, gallery, preview_gallery],
show_progress="full"
).then(
fn=update_height_width,
inputs=[images_state],
outputs=[height, width]
).then(
fn=update_denoise_checkboxes,
inputs=[images_state, task_type, azimuth, elevation, distance],
outputs=[denoise_mask_checkbox]
)
# Update delete buttons connections
delete_button.click(
fn=delete_selected_images,
inputs=[selected_indices_state, images_state, gallery],
outputs=[images_state, gallery, preview_gallery, selected_indices_state]
).then(
fn=update_height_width,
inputs=[images_state],
outputs=[height, width]
).then(
fn=update_denoise_checkboxes,
inputs=[images_state, task_type, azimuth, elevation, distance],
outputs=[denoise_mask_checkbox]
)
delete_all_button.click(
fn=delete_all_images,
inputs=[],
outputs=[images_state, gallery, preview_gallery, selected_indices_state]
).then(
fn=update_denoise_checkboxes,
inputs=[images_state, task_type, azimuth, elevation, distance],
outputs=[denoise_mask_checkbox]
).then(
fn=update_height_width,
inputs=[images_state],
outputs=[height, width]
)
task_type.change(
fn=update_denoise_checkboxes,
inputs=[images_state, task_type, azimuth, elevation, distance],
outputs=[denoise_mask_checkbox]
)
azimuth.change(
fn=update_denoise_checkboxes,
inputs=[images_state, task_type, azimuth, elevation, distance],
outputs=[denoise_mask_checkbox]
)
elevation.change(
fn=update_denoise_checkboxes,
inputs=[images_state, task_type, azimuth, elevation, distance],
outputs=[denoise_mask_checkbox]
)
distance.change(
fn=update_denoise_checkboxes,
inputs=[images_state, task_type, azimuth, elevation, distance],
outputs=[denoise_mask_checkbox]
)
generate_btn.click(
fn=generate_image,
inputs=[
images_state, prompt, negative_prompt, num_steps, guidance_scale,
denoise_mask_checkbox, task_type, azimuth, elevation, distance,
focal_length, height, width, scale_factor, scale_watershed, noise_scale # Added noise_scale here
],
outputs=[output_images, status],
concurrency_id="gpu_queue"
)
auto_caption_btn.click(
fn=update_prompt,
inputs=[images_state, task_type, captioning_message],
outputs=[prompt, caption_status],
concurrency_id="gpu_queue"
)
# apply_mask_btn.click(
# fn=apply_mask,
# inputs=[images_state],
# outputs=[output_images, status]
# )
# Update the Examples component with preview column
examples = gr.Examples(
examples=get_example(),
fn=run_for_examples,
inputs=[
gr.Textbox(visible=False), # Example name column
gr.Image(show_label=False, visible=False), # Preview column
gallery,
prompt,
negative_prompt,
num_steps,
guidance_scale,
denoise_mask_checkbox,
task_type,
azimuth,
elevation,
distance,
focal_length,
height,
width,
scale_factor,
scale_watershed,
noise_scale
],
outputs=[
output_images,
status,
gallery,
images_state,
preview_gallery
],
cache_examples=True,
label="Examples"
)
# the default load_from_cache function throws error for text-to-image and text-to-multiview because the list of input views is empty
def custom_load_from_cache(self, example_id: int) -> List[Any]:
"""Loads a particular cached example for the interface.
Parameters:
example_id: The id of the example to process (zero-indexed).
"""
with open(self.cached_file, encoding="utf-8") as cache:
examples = list(csv.reader(cache))
example = examples[example_id + 1] # +1 to adjust for header
output = []
if self.outputs is None:
raise ValueError("self.outputs is missing")
for component, value in zip(self.outputs, example):
value_to_use = value
try:
value_as_dict = ast.literal_eval(value)
# File components that output multiple files get saved as a python list
# need to pass the parsed list to serialize
# TODO: Better file serialization in 4.0
if isinstance(value_as_dict, list) and isinstance(
component, components.File
):
tmp = value_as_dict
if not utils.is_prop_update(tmp):
raise TypeError("value wasn't an update") # caught below
value_to_use = tmp
output.append(value_to_use)
except (ValueError, TypeError, SyntaxError):
output.append(component.read_from_flag(value_to_use))
return output
def apply_custom_load_from_cache(examples_instance):
"""
Applies the custom load_from_cache method to a Gradio Examples instance.
Parameters:
examples_instance: The Gradio Examples instance to modify
"""
examples_instance.load_from_cache = MethodType(custom_load_from_cache, examples_instance)
apply_custom_load_from_cache(examples)
# Connect the event handler for file upload changes
gallery.change(
fn=update_gallery_state,
inputs=[gallery, images_state],
outputs=[images_state, gallery, preview_gallery],
show_progress="full"
).then(
fn=update_height_width,
inputs=[images_state],
outputs=[height, width]
).then(
fn=update_denoise_checkboxes,
inputs=[images_state, task_type, azimuth, elevation, distance],
outputs=[denoise_mask_checkbox]
)
demo.launch() |