File size: 23,918 Bytes
07d760c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740

"""
Adapted from code originally written by David Novotny.
"""

import torch
from pytorch3d.transforms import Rotate, Translate

import cv2
import numpy as np
import torch
from pytorch3d.renderer import PerspectiveCameras, RayBundle

def intersect_skew_line_groups(p, r, mask):
    # p, r both of shape (B, N, n_intersected_lines, 3)
    # mask of shape (B, N, n_intersected_lines)
    p_intersect, r = intersect_skew_lines_high_dim(p, r, mask=mask)
    if p_intersect is None:
        return None, None, None, None
    _, p_line_intersect = point_line_distance(
        p, r, p_intersect[..., None, :].expand_as(p)
    )
    intersect_dist_squared = ((p_line_intersect - p_intersect[..., None, :]) ** 2).sum(
        dim=-1
    )
    return p_intersect, p_line_intersect, intersect_dist_squared, r


def intersect_skew_lines_high_dim(p, r, mask=None):
    # Implements https://en.wikipedia.org/wiki/Skew_lines In more than two dimensions
    dim = p.shape[-1]
    # make sure the heading vectors are l2-normed
    if mask is None:
        mask = torch.ones_like(p[..., 0])
    r = torch.nn.functional.normalize(r, dim=-1)

    eye = torch.eye(dim, device=p.device, dtype=p.dtype)[None, None]
    I_min_cov = (eye - (r[..., None] * r[..., None, :])) * mask[..., None, None]
    sum_proj = I_min_cov.matmul(p[..., None]).sum(dim=-3)

    # I_eps = torch.zeros_like(I_min_cov.sum(dim=-3)) + 1e-10
    # p_intersect = torch.pinverse(I_min_cov.sum(dim=-3) + I_eps).matmul(sum_proj)[..., 0]
    p_intersect = torch.linalg.lstsq(I_min_cov.sum(dim=-3), sum_proj).solution[..., 0]

    # I_min_cov.sum(dim=-3): torch.Size([1, 1, 3, 3])
    # sum_proj: torch.Size([1, 1, 3, 1])

    # p_intersect = np.linalg.lstsq(I_min_cov.sum(dim=-3).numpy(), sum_proj.numpy(), rcond=None)[0]

    if torch.any(torch.isnan(p_intersect)):
        print(p_intersect)
        return None, None
        ipdb.set_trace()
        assert False
    return p_intersect, r


def point_line_distance(p1, r1, p2):
    df = p2 - p1
    proj_vector = df - ((df * r1).sum(dim=-1, keepdim=True) * r1)
    line_pt_nearest = p2 - proj_vector
    d = (proj_vector).norm(dim=-1)
    return d, line_pt_nearest


def compute_optical_axis_intersection(cameras):
    centers = cameras.get_camera_center()
    principal_points = cameras.principal_point

    one_vec = torch.ones((len(cameras), 1), device=centers.device)
    optical_axis = torch.cat((principal_points, one_vec), -1)

    # optical_axis = torch.cat(
    #     (principal_points, cameras.focal_length[:, 0].unsqueeze(1)), -1
    # )

    pp = cameras.unproject_points(optical_axis, from_ndc=True, world_coordinates=True)
    pp2 = torch.diagonal(pp, dim1=0, dim2=1).T

    directions = pp2 - centers
    centers = centers.unsqueeze(0).unsqueeze(0)
    directions = directions.unsqueeze(0).unsqueeze(0)

    p_intersect, p_line_intersect, _, r = intersect_skew_line_groups(
        p=centers, r=directions, mask=None
    )

    if p_intersect is None:
        dist = None
    else:
        p_intersect = p_intersect.squeeze().unsqueeze(0)
        dist = (p_intersect - centers).norm(dim=-1)

    return p_intersect, dist, p_line_intersect, pp2, r


def normalize_cameras(cameras, scale=1.0):
    """
    Normalizes cameras such that the optical axes point to the origin, the rotation is
    identity, and the norm of the translation of the first camera is 1.

    Args:
        cameras (pytorch3d.renderer.cameras.CamerasBase).
        scale (float): Norm of the translation of the first camera.

    Returns:
        new_cameras (pytorch3d.renderer.cameras.CamerasBase): Normalized cameras.
        undo_transform (function): Function that undoes the normalization.
    """

    # Let distance from first camera to origin be unit
    new_cameras = cameras.clone()
    new_transform = (
        new_cameras.get_world_to_view_transform()
    )  # potential R is not valid matrix
    p_intersect, dist, p_line_intersect, pp, r = compute_optical_axis_intersection(
        cameras
    )

    if p_intersect is None:
        print("Warning: optical axes code has a nan. Returning identity cameras.")
        new_cameras.R[:] = torch.eye(3, device=cameras.R.device, dtype=cameras.R.dtype)
        new_cameras.T[:] = torch.tensor(
            [0, 0, 1], device=cameras.T.device, dtype=cameras.T.dtype
        )
        return new_cameras, lambda x: x

    d = dist.squeeze(dim=1).squeeze(dim=0)[0]
    # Degenerate case
    if d == 0:
        print(cameras.T)
        print(new_transform.get_matrix()[:, 3, :3])
        assert False
    assert d != 0

    # Can't figure out how to make scale part of the transform too without messing up R.
    # Ideally, we would just wrap it all in a single Pytorch3D transform so that it
    # would work with any structure (eg PointClouds, Meshes).
    tR = Rotate(new_cameras.R[0].unsqueeze(0)).inverse()
    tT = Translate(p_intersect)
    t = tR.compose(tT)

    new_transform = t.compose(new_transform)
    new_cameras.R = new_transform.get_matrix()[:, :3, :3]
    new_cameras.T = new_transform.get_matrix()[:, 3, :3] / d * scale

    def undo_transform(cameras):
        cameras_copy = cameras.clone()
        cameras_copy.T *= d / scale
        new_t = (
            t.inverse().compose(cameras_copy.get_world_to_view_transform()).get_matrix()
        )
        cameras_copy.R = new_t[:, :3, :3]
        cameras_copy.T = new_t[:, 3, :3]
        return cameras_copy

    return new_cameras, undo_transform

def first_camera_transform(cameras, rotation_only=True):
    new_cameras = cameras.clone()
    new_transform = new_cameras.get_world_to_view_transform()
    tR = Rotate(new_cameras.R[0].unsqueeze(0))
    if rotation_only:
        t = tR.inverse()
    else:
        tT = Translate(new_cameras.T[0].unsqueeze(0))
        t = tR.compose(tT).inverse()

    new_transform = t.compose(new_transform)
    new_cameras.R = new_transform.get_matrix()[:, :3, :3]
    new_cameras.T = new_transform.get_matrix()[:, 3, :3]

    return new_cameras


def get_identity_cameras_with_intrinsics(cameras):
    D = len(cameras)
    device = cameras.R.device

    new_cameras = cameras.clone()
    new_cameras.R = torch.eye(3, device=device).unsqueeze(0).repeat((D, 1, 1))
    new_cameras.T = torch.zeros((D, 3), device=device)

    return new_cameras


def normalize_cameras_batch(cameras, scale=1.0, normalize_first_camera=False):
    new_cameras = []
    undo_transforms = []
    for cam in cameras:
        if normalize_first_camera:
            # Normalize cameras such that first camera is identity and origin is at
            # first camera center.
            normalized_cameras = first_camera_transform(cam, rotation_only=False)
            undo_transform = None
        else:
            normalized_cameras, undo_transform = normalize_cameras(cam, scale=scale)
        new_cameras.append(normalized_cameras)
        undo_transforms.append(undo_transform)
    return new_cameras, undo_transforms


class Rays(object):
    def __init__(
        self,
        rays=None,
        origins=None,
        directions=None,
        moments=None,
        is_plucker=False,
        moments_rescale=1.0,
        ndc_coordinates=None,
        crop_parameters=None,
        num_patches_x=16,
        num_patches_y=16,
    ):
        """
        Ray class to keep track of current ray representation.

        Args:
            rays: (..., 6).
            origins: (..., 3).
            directions: (..., 3).
            moments: (..., 3).
            is_plucker: If True, rays are in plucker coordinates (Default: False).
            moments_rescale: Rescale the moment component of the rays by a scalar.
            ndc_coordinates: (..., 2): NDC coordinates of each ray.
        """
        if rays is not None:
            self.rays = rays
            self._is_plucker = is_plucker
        elif origins is not None and directions is not None:
            self.rays = torch.cat((origins, directions), dim=-1)
            self._is_plucker = False
        elif directions is not None and moments is not None:
            self.rays = torch.cat((directions, moments), dim=-1)
            self._is_plucker = True
        else:
            raise Exception("Invalid combination of arguments")

        if moments_rescale != 1.0:
            self.rescale_moments(moments_rescale)

        if ndc_coordinates is not None:
            self.ndc_coordinates = ndc_coordinates
        elif crop_parameters is not None:
            # (..., H, W, 2)
            xy_grid = compute_ndc_coordinates(
                crop_parameters,
                num_patches_x=num_patches_x,
                num_patches_y=num_patches_y,
            )[..., :2]
            xy_grid = xy_grid.reshape(*xy_grid.shape[:-3], -1, 2)
            self.ndc_coordinates = xy_grid
        else:
            self.ndc_coordinates = None

    def __getitem__(self, index):
        return Rays(
            rays=self.rays[index],
            is_plucker=self._is_plucker,
            ndc_coordinates=(
                self.ndc_coordinates[index]
                if self.ndc_coordinates is not None
                else None
            ),
        )

    def to_spatial(self, include_ndc_coordinates=False):
        """
        Converts rays to spatial representation: (..., H * W, 6) --> (..., 6, H, W)

        Returns:
            torch.Tensor: (..., 6, H, W)
        """
        rays = self.to_plucker().rays
        *batch_dims, P, D = rays.shape
        H = W = int(np.sqrt(P))
        assert H * W == P
        rays = torch.transpose(rays, -1, -2)  # (..., 6, H * W)
        rays = rays.reshape(*batch_dims, D, H, W)
        if include_ndc_coordinates:
            ndc_coords = self.ndc_coordinates.transpose(-1, -2)  # (..., 2, H * W)
            ndc_coords = ndc_coords.reshape(*batch_dims, 2, H, W)
            rays = torch.cat((rays, ndc_coords), dim=-3)
        return rays

    def rescale_moments(self, scale):
        """
        Rescale the moment component of the rays by a scalar. Might be desirable since
        moments may come from a very narrow distribution.

        Note that this modifies in place!
        """
        if self.is_plucker:
            self.rays[..., 3:] *= scale
            return self
        else:
            return self.to_plucker().rescale_moments(scale)

    @classmethod
    def from_spatial(cls, rays, moments_rescale=1.0, ndc_coordinates=None):
        """
        Converts rays from spatial representation: (..., 6, H, W) --> (..., H * W, 6)

        Args:
            rays: (..., 6, H, W)

        Returns:
            Rays: (..., H * W, 6)
        """
        *batch_dims, D, H, W = rays.shape
        rays = rays.reshape(*batch_dims, D, H * W)
        rays = torch.transpose(rays, -1, -2)
        return cls(
            rays=rays,
            is_plucker=True,
            moments_rescale=moments_rescale,
            ndc_coordinates=ndc_coordinates,
        )

    def to_point_direction(self, normalize_moment=True):
        """
        Convert to point direction representation <O, D>.

        Returns:
            rays: (..., 6).
        """
        if self._is_plucker:
            direction = torch.nn.functional.normalize(self.rays[..., :3], dim=-1)
            moment = self.rays[..., 3:]
            if normalize_moment:
                c = torch.linalg.norm(direction, dim=-1, keepdim=True)
                moment = moment / c
            points = torch.cross(direction, moment, dim=-1)
            return Rays(
                rays=torch.cat((points, direction), dim=-1),
                is_plucker=False,
                ndc_coordinates=self.ndc_coordinates,
            )
        else:
            return self

    def to_plucker(self):
        """
        Convert to plucker representation <D, OxD>.
        """
        if self.is_plucker:
            return self
        else:
            ray = self.rays.clone()
            ray_origins = ray[..., :3]
            ray_directions = ray[..., 3:]
            # Normalize ray directions to unit vectors
            ray_directions = ray_directions / ray_directions.norm(dim=-1, keepdim=True)
            plucker_normal = torch.cross(ray_origins, ray_directions, dim=-1)
            new_ray = torch.cat([ray_directions, plucker_normal], dim=-1)
            return Rays(
                rays=new_ray, is_plucker=True, ndc_coordinates=self.ndc_coordinates
            )

    def get_directions(self, normalize=True):
        if self.is_plucker:
            directions = self.rays[..., :3]
        else:
            directions = self.rays[..., 3:]
        if normalize:
            directions = torch.nn.functional.normalize(directions, dim=-1)
        return directions

    def get_origins(self):
        if self.is_plucker:
            origins = self.to_point_direction().get_origins()
        else:
            origins = self.rays[..., :3]
        return origins

    def get_moments(self):
        if self.is_plucker:
            moments = self.rays[..., 3:]
        else:
            moments = self.to_plucker().get_moments()
        return moments

    def get_ndc_coordinates(self):
        return self.ndc_coordinates

    @property
    def is_plucker(self):
        return self._is_plucker

    @property
    def device(self):
        return self.rays.device

    def __repr__(self, *args, **kwargs):
        ray_str = self.rays.__repr__(*args, **kwargs)[6:]  # remove "tensor"
        if self._is_plucker:
            return "PluRay" + ray_str
        else:
            return "DirRay" + ray_str

    def to(self, device):
        self.rays = self.rays.to(device)

    def clone(self):
        return Rays(rays=self.rays.clone(), is_plucker=self._is_plucker)

    @property
    def shape(self):
        return self.rays.shape

    def visualize(self):
        directions = torch.nn.functional.normalize(self.get_directions(), dim=-1).cpu()
        moments = torch.nn.functional.normalize(self.get_moments(), dim=-1).cpu()
        return (directions + 1) / 2, (moments + 1) / 2

    def to_ray_bundle(self, length=0.3, recenter=True):
        lengths = torch.ones_like(self.get_origins()[..., :2]) * length
        lengths[..., 0] = 0
        if recenter:
            centers, _ = intersect_skew_lines_high_dim(
                self.get_origins(), self.get_directions()
            )
            centers = centers.unsqueeze(1).repeat(1, lengths.shape[1], 1)
        else:
            centers = self.get_origins()
        return RayBundle(
            origins=centers,
            directions=self.get_directions(),
            lengths=lengths,
            xys=self.get_directions(),
        )


def cameras_to_rays(
    cameras,
    crop_parameters,
    use_half_pix=True,
    use_plucker=True,
    num_patches_x=16,
    num_patches_y=16,
):
    """
    Unprojects rays from camera center to grid on image plane.

    Args:
        cameras: Pytorch3D cameras to unproject. Can be batched.
        crop_parameters: Crop parameters in NDC (cc_x, cc_y, crop_width, scale).
            Shape is (B, 4).
        use_half_pix: If True, use half pixel offset (Default: True).
        use_plucker: If True, return rays in plucker coordinates (Default: False).
        num_patches_x: Number of patches in x direction (Default: 16).
        num_patches_y: Number of patches in y direction (Default: 16).
    """
    unprojected = []
    crop_parameters_list = (
        crop_parameters if crop_parameters is not None else [None for _ in cameras]
    )
    for camera, crop_param in zip(cameras, crop_parameters_list):
        xyd_grid = compute_ndc_coordinates(
            crop_parameters=crop_param,
            use_half_pix=use_half_pix,
            num_patches_x=num_patches_x,
            num_patches_y=num_patches_y,
        )

        unprojected.append(
            camera.unproject_points(
                xyd_grid.reshape(-1, 3), world_coordinates=True, from_ndc=True
            )
        )
    unprojected = torch.stack(unprojected, dim=0)  # (N, P, 3)
    origins = cameras.get_camera_center().unsqueeze(1)  # (N, 1, 3)
    origins = origins.repeat(1, num_patches_x * num_patches_y, 1)  # (N, P, 3)
    directions = unprojected - origins

    rays = Rays(
        origins=origins,
        directions=directions,
        crop_parameters=crop_parameters,
        num_patches_x=num_patches_x,
        num_patches_y=num_patches_y,
    )
    if use_plucker:
        return rays.to_plucker()
    return rays


def rays_to_cameras(
    rays,
    crop_parameters,
    num_patches_x=16,
    num_patches_y=16,
    use_half_pix=True,
    sampled_ray_idx=None,
    cameras=None,
    focal_length=(3.453,),
):
    """
    If cameras are provided, will use those intrinsics. Otherwise will use the provided
    focal_length(s). Dataset default is 3.32.

    Args:
        rays (Rays): (N, P, 6)
        crop_parameters (torch.Tensor): (N, 4)
    """
    device = rays.device
    origins = rays.get_origins()
    directions = rays.get_directions()
    camera_centers, _ = intersect_skew_lines_high_dim(origins, directions)

    # Retrieve target rays
    if cameras is None:
        if len(focal_length) == 1:
            focal_length = focal_length * rays.shape[0]
        I_camera = PerspectiveCameras(focal_length=focal_length, device=device)
    else:
        # Use same intrinsics but reset to identity extrinsics.
        I_camera = cameras.clone()
        I_camera.R[:] = torch.eye(3, device=device)
        I_camera.T[:] = torch.zeros(3, device=device)
    I_patch_rays = cameras_to_rays(
        cameras=I_camera,
        num_patches_x=num_patches_x,
        num_patches_y=num_patches_y,
        use_half_pix=use_half_pix,
        crop_parameters=crop_parameters,
    ).get_directions()

    if sampled_ray_idx is not None:
        I_patch_rays = I_patch_rays[:, sampled_ray_idx]

    # Compute optimal rotation to align rays
    R = torch.zeros_like(I_camera.R)
    for i in range(len(I_camera)):
        R[i] = compute_optimal_rotation_alignment(
            I_patch_rays[i],
            directions[i],
        )

    # Construct and return rotated camera
    cam = I_camera.clone()
    cam.R = R
    cam.T = -torch.matmul(R.transpose(1, 2), camera_centers.unsqueeze(2)).squeeze(2)
    return cam


# https://www.reddit.com/r/learnmath/comments/v1crd7/linear_algebra_qr_to_ql_decomposition/
def ql_decomposition(A):
    P = torch.tensor([[0, 0, 1], [0, 1, 0], [1, 0, 0]], device=A.device).float()
    A_tilde = torch.matmul(A, P)
    Q_tilde, R_tilde = torch.linalg.qr(A_tilde)
    Q = torch.matmul(Q_tilde, P)
    L = torch.matmul(torch.matmul(P, R_tilde), P)
    d = torch.diag(L)
    Q[:, 0] *= torch.sign(d[0])
    Q[:, 1] *= torch.sign(d[1])
    Q[:, 2] *= torch.sign(d[2])
    L[0] *= torch.sign(d[0])
    L[1] *= torch.sign(d[1])
    L[2] *= torch.sign(d[2])
    return Q, L


def rays_to_cameras_homography(
    rays,
    crop_parameters,
    num_patches_x=16,
    num_patches_y=16,
    use_half_pix=True,
    sampled_ray_idx=None,
    reproj_threshold=0.2,
):
    """
    Args:
        rays (Rays): (N, P, 6)
        crop_parameters (torch.Tensor): (N, 4)
    """
    device = rays.device
    origins = rays.get_origins()
    directions = rays.get_directions()
    camera_centers, _ = intersect_skew_lines_high_dim(origins, directions)

    # Retrieve target rays
    I_camera = PerspectiveCameras(focal_length=[1] * rays.shape[0], device=device)
    I_patch_rays = cameras_to_rays(
        cameras=I_camera,
        num_patches_x=num_patches_x,
        num_patches_y=num_patches_y,
        use_half_pix=use_half_pix,
        crop_parameters=crop_parameters,
    ).get_directions()

    if sampled_ray_idx is not None:
        I_patch_rays = I_patch_rays[:, sampled_ray_idx]

    # Compute optimal rotation to align rays
    Rs = []
    focal_lengths = []
    principal_points = []
    for i in range(rays.shape[-3]):
        R, f, pp = compute_optimal_rotation_intrinsics(
            I_patch_rays[i],
            directions[i],
            reproj_threshold=reproj_threshold,
        )
        Rs.append(R)
        focal_lengths.append(f)
        principal_points.append(pp)

    R = torch.stack(Rs)
    focal_lengths = torch.stack(focal_lengths)
    principal_points = torch.stack(principal_points)
    T = -torch.matmul(R.transpose(1, 2), camera_centers.unsqueeze(2)).squeeze(2)
    return PerspectiveCameras(
        R=R,
        T=T,
        focal_length=focal_lengths,
        principal_point=principal_points,
        device=device,
    )


def compute_optimal_rotation_alignment(A, B):
    """
    Compute optimal R that minimizes: || A - B @ R ||_F

    Args:
        A (torch.Tensor): (N, 3)
        B (torch.Tensor): (N, 3)

    Returns:
        R (torch.tensor): (3, 3)
    """
    # normally with R @ B, this would be A @ B.T
    H = B.T @ A
    U, _, Vh = torch.linalg.svd(H, full_matrices=True)
    s = torch.linalg.det(U @ Vh)
    S_prime = torch.diag(torch.tensor([1, 1, torch.sign(s)], device=A.device))
    return U @ S_prime @ Vh


def compute_optimal_rotation_intrinsics(
    rays_origin, rays_target, z_threshold=1e-4, reproj_threshold=0.2
):
    """
    Note: for some reason, f seems to be 1/f.

    Args:
        rays_origin (torch.Tensor): (N, 3)
        rays_target (torch.Tensor): (N, 3)
        z_threshold (float): Threshold for z value to be considered valid.

    Returns:
        R (torch.tensor): (3, 3)
        focal_length (torch.tensor): (2,)
        principal_point (torch.tensor): (2,)
    """
    device = rays_origin.device
    z_mask = torch.logical_and(
        torch.abs(rays_target) > z_threshold, torch.abs(rays_origin) > z_threshold
    )[:, 2]
    rays_target = rays_target[z_mask]
    rays_origin = rays_origin[z_mask]
    rays_origin = rays_origin[:, :2] / rays_origin[:, -1:]
    rays_target = rays_target[:, :2] / rays_target[:, -1:]

    A, _ = cv2.findHomography(
        rays_origin.cpu().numpy(),
        rays_target.cpu().numpy(),
        cv2.RANSAC,
        reproj_threshold,
    )
    A = torch.from_numpy(A).float().to(device)

    if torch.linalg.det(A) < 0:
        A = -A

    R, L = ql_decomposition(A)
    L = L / L[2][2]

    f = torch.stack((L[0][0], L[1][1]))
    pp = torch.stack((L[2][0], L[2][1]))
    return R, f, pp


def compute_ndc_coordinates(
    crop_parameters=None,
    use_half_pix=True,
    num_patches_x=16,
    num_patches_y=16,
    device=None,
):
    """
    Computes NDC Grid using crop_parameters. If crop_parameters is not provided,
    then it assumes that the crop is the entire image (corresponding to an NDC grid
    where top left corner is (1, 1) and bottom right corner is (-1, -1)).
    """
    if crop_parameters is None:
        cc_x, cc_y, width = 0, 0, 2
    else:
        if len(crop_parameters.shape) > 1:
            return torch.stack(
                [
                    compute_ndc_coordinates(
                        crop_parameters=crop_param,
                        use_half_pix=use_half_pix,
                        num_patches_x=num_patches_x,
                        num_patches_y=num_patches_y,
                    )
                    for crop_param in crop_parameters
                ],
                dim=0,
            )
        device = crop_parameters.device
        cc_x, cc_y, width, _ = crop_parameters

    dx = 1 / num_patches_x
    dy = 1 / num_patches_y
    if use_half_pix:
        min_y = 1 - dy
        max_y = -min_y
        min_x = 1 - dx
        max_x = -min_x
    else:
        min_y = min_x = 1
        max_y = -1 + 2 * dy
        max_x = -1 + 2 * dx
        
    y, x = torch.meshgrid(
        torch.linspace(min_y, max_y, num_patches_y, dtype=torch.float32, device=device),
        torch.linspace(min_x, max_x, num_patches_x, dtype=torch.float32, device=device),
        indexing="ij",
    )
    x_prime = x * width / 2 - cc_x
    y_prime = y * width / 2 - cc_y
    xyd_grid = torch.stack([x_prime, y_prime, torch.ones_like(x)], dim=-1)
    return xyd_grid