Spaces:
Running
on
Zero
Running
on
Zero
File size: 23,918 Bytes
038856e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 |
"""
Adapted from code originally written by David Novotny.
"""
import torch
from pytorch3d.transforms import Rotate, Translate
import cv2
import numpy as np
import torch
from pytorch3d.renderer import PerspectiveCameras, RayBundle
def intersect_skew_line_groups(p, r, mask):
# p, r both of shape (B, N, n_intersected_lines, 3)
# mask of shape (B, N, n_intersected_lines)
p_intersect, r = intersect_skew_lines_high_dim(p, r, mask=mask)
if p_intersect is None:
return None, None, None, None
_, p_line_intersect = point_line_distance(
p, r, p_intersect[..., None, :].expand_as(p)
)
intersect_dist_squared = ((p_line_intersect - p_intersect[..., None, :]) ** 2).sum(
dim=-1
)
return p_intersect, p_line_intersect, intersect_dist_squared, r
def intersect_skew_lines_high_dim(p, r, mask=None):
# Implements https://en.wikipedia.org/wiki/Skew_lines In more than two dimensions
dim = p.shape[-1]
# make sure the heading vectors are l2-normed
if mask is None:
mask = torch.ones_like(p[..., 0])
r = torch.nn.functional.normalize(r, dim=-1)
eye = torch.eye(dim, device=p.device, dtype=p.dtype)[None, None]
I_min_cov = (eye - (r[..., None] * r[..., None, :])) * mask[..., None, None]
sum_proj = I_min_cov.matmul(p[..., None]).sum(dim=-3)
# I_eps = torch.zeros_like(I_min_cov.sum(dim=-3)) + 1e-10
# p_intersect = torch.pinverse(I_min_cov.sum(dim=-3) + I_eps).matmul(sum_proj)[..., 0]
p_intersect = torch.linalg.lstsq(I_min_cov.sum(dim=-3), sum_proj).solution[..., 0]
# I_min_cov.sum(dim=-3): torch.Size([1, 1, 3, 3])
# sum_proj: torch.Size([1, 1, 3, 1])
# p_intersect = np.linalg.lstsq(I_min_cov.sum(dim=-3).numpy(), sum_proj.numpy(), rcond=None)[0]
if torch.any(torch.isnan(p_intersect)):
print(p_intersect)
return None, None
ipdb.set_trace()
assert False
return p_intersect, r
def point_line_distance(p1, r1, p2):
df = p2 - p1
proj_vector = df - ((df * r1).sum(dim=-1, keepdim=True) * r1)
line_pt_nearest = p2 - proj_vector
d = (proj_vector).norm(dim=-1)
return d, line_pt_nearest
def compute_optical_axis_intersection(cameras):
centers = cameras.get_camera_center()
principal_points = cameras.principal_point
one_vec = torch.ones((len(cameras), 1), device=centers.device)
optical_axis = torch.cat((principal_points, one_vec), -1)
# optical_axis = torch.cat(
# (principal_points, cameras.focal_length[:, 0].unsqueeze(1)), -1
# )
pp = cameras.unproject_points(optical_axis, from_ndc=True, world_coordinates=True)
pp2 = torch.diagonal(pp, dim1=0, dim2=1).T
directions = pp2 - centers
centers = centers.unsqueeze(0).unsqueeze(0)
directions = directions.unsqueeze(0).unsqueeze(0)
p_intersect, p_line_intersect, _, r = intersect_skew_line_groups(
p=centers, r=directions, mask=None
)
if p_intersect is None:
dist = None
else:
p_intersect = p_intersect.squeeze().unsqueeze(0)
dist = (p_intersect - centers).norm(dim=-1)
return p_intersect, dist, p_line_intersect, pp2, r
def normalize_cameras(cameras, scale=1.0):
"""
Normalizes cameras such that the optical axes point to the origin, the rotation is
identity, and the norm of the translation of the first camera is 1.
Args:
cameras (pytorch3d.renderer.cameras.CamerasBase).
scale (float): Norm of the translation of the first camera.
Returns:
new_cameras (pytorch3d.renderer.cameras.CamerasBase): Normalized cameras.
undo_transform (function): Function that undoes the normalization.
"""
# Let distance from first camera to origin be unit
new_cameras = cameras.clone()
new_transform = (
new_cameras.get_world_to_view_transform()
) # potential R is not valid matrix
p_intersect, dist, p_line_intersect, pp, r = compute_optical_axis_intersection(
cameras
)
if p_intersect is None:
print("Warning: optical axes code has a nan. Returning identity cameras.")
new_cameras.R[:] = torch.eye(3, device=cameras.R.device, dtype=cameras.R.dtype)
new_cameras.T[:] = torch.tensor(
[0, 0, 1], device=cameras.T.device, dtype=cameras.T.dtype
)
return new_cameras, lambda x: x
d = dist.squeeze(dim=1).squeeze(dim=0)[0]
# Degenerate case
if d == 0:
print(cameras.T)
print(new_transform.get_matrix()[:, 3, :3])
assert False
assert d != 0
# Can't figure out how to make scale part of the transform too without messing up R.
# Ideally, we would just wrap it all in a single Pytorch3D transform so that it
# would work with any structure (eg PointClouds, Meshes).
tR = Rotate(new_cameras.R[0].unsqueeze(0)).inverse()
tT = Translate(p_intersect)
t = tR.compose(tT)
new_transform = t.compose(new_transform)
new_cameras.R = new_transform.get_matrix()[:, :3, :3]
new_cameras.T = new_transform.get_matrix()[:, 3, :3] / d * scale
def undo_transform(cameras):
cameras_copy = cameras.clone()
cameras_copy.T *= d / scale
new_t = (
t.inverse().compose(cameras_copy.get_world_to_view_transform()).get_matrix()
)
cameras_copy.R = new_t[:, :3, :3]
cameras_copy.T = new_t[:, 3, :3]
return cameras_copy
return new_cameras, undo_transform
def first_camera_transform(cameras, rotation_only=True):
new_cameras = cameras.clone()
new_transform = new_cameras.get_world_to_view_transform()
tR = Rotate(new_cameras.R[0].unsqueeze(0))
if rotation_only:
t = tR.inverse()
else:
tT = Translate(new_cameras.T[0].unsqueeze(0))
t = tR.compose(tT).inverse()
new_transform = t.compose(new_transform)
new_cameras.R = new_transform.get_matrix()[:, :3, :3]
new_cameras.T = new_transform.get_matrix()[:, 3, :3]
return new_cameras
def get_identity_cameras_with_intrinsics(cameras):
D = len(cameras)
device = cameras.R.device
new_cameras = cameras.clone()
new_cameras.R = torch.eye(3, device=device).unsqueeze(0).repeat((D, 1, 1))
new_cameras.T = torch.zeros((D, 3), device=device)
return new_cameras
def normalize_cameras_batch(cameras, scale=1.0, normalize_first_camera=False):
new_cameras = []
undo_transforms = []
for cam in cameras:
if normalize_first_camera:
# Normalize cameras such that first camera is identity and origin is at
# first camera center.
normalized_cameras = first_camera_transform(cam, rotation_only=False)
undo_transform = None
else:
normalized_cameras, undo_transform = normalize_cameras(cam, scale=scale)
new_cameras.append(normalized_cameras)
undo_transforms.append(undo_transform)
return new_cameras, undo_transforms
class Rays(object):
def __init__(
self,
rays=None,
origins=None,
directions=None,
moments=None,
is_plucker=False,
moments_rescale=1.0,
ndc_coordinates=None,
crop_parameters=None,
num_patches_x=16,
num_patches_y=16,
):
"""
Ray class to keep track of current ray representation.
Args:
rays: (..., 6).
origins: (..., 3).
directions: (..., 3).
moments: (..., 3).
is_plucker: If True, rays are in plucker coordinates (Default: False).
moments_rescale: Rescale the moment component of the rays by a scalar.
ndc_coordinates: (..., 2): NDC coordinates of each ray.
"""
if rays is not None:
self.rays = rays
self._is_plucker = is_plucker
elif origins is not None and directions is not None:
self.rays = torch.cat((origins, directions), dim=-1)
self._is_plucker = False
elif directions is not None and moments is not None:
self.rays = torch.cat((directions, moments), dim=-1)
self._is_plucker = True
else:
raise Exception("Invalid combination of arguments")
if moments_rescale != 1.0:
self.rescale_moments(moments_rescale)
if ndc_coordinates is not None:
self.ndc_coordinates = ndc_coordinates
elif crop_parameters is not None:
# (..., H, W, 2)
xy_grid = compute_ndc_coordinates(
crop_parameters,
num_patches_x=num_patches_x,
num_patches_y=num_patches_y,
)[..., :2]
xy_grid = xy_grid.reshape(*xy_grid.shape[:-3], -1, 2)
self.ndc_coordinates = xy_grid
else:
self.ndc_coordinates = None
def __getitem__(self, index):
return Rays(
rays=self.rays[index],
is_plucker=self._is_plucker,
ndc_coordinates=(
self.ndc_coordinates[index]
if self.ndc_coordinates is not None
else None
),
)
def to_spatial(self, include_ndc_coordinates=False):
"""
Converts rays to spatial representation: (..., H * W, 6) --> (..., 6, H, W)
Returns:
torch.Tensor: (..., 6, H, W)
"""
rays = self.to_plucker().rays
*batch_dims, P, D = rays.shape
H = W = int(np.sqrt(P))
assert H * W == P
rays = torch.transpose(rays, -1, -2) # (..., 6, H * W)
rays = rays.reshape(*batch_dims, D, H, W)
if include_ndc_coordinates:
ndc_coords = self.ndc_coordinates.transpose(-1, -2) # (..., 2, H * W)
ndc_coords = ndc_coords.reshape(*batch_dims, 2, H, W)
rays = torch.cat((rays, ndc_coords), dim=-3)
return rays
def rescale_moments(self, scale):
"""
Rescale the moment component of the rays by a scalar. Might be desirable since
moments may come from a very narrow distribution.
Note that this modifies in place!
"""
if self.is_plucker:
self.rays[..., 3:] *= scale
return self
else:
return self.to_plucker().rescale_moments(scale)
@classmethod
def from_spatial(cls, rays, moments_rescale=1.0, ndc_coordinates=None):
"""
Converts rays from spatial representation: (..., 6, H, W) --> (..., H * W, 6)
Args:
rays: (..., 6, H, W)
Returns:
Rays: (..., H * W, 6)
"""
*batch_dims, D, H, W = rays.shape
rays = rays.reshape(*batch_dims, D, H * W)
rays = torch.transpose(rays, -1, -2)
return cls(
rays=rays,
is_plucker=True,
moments_rescale=moments_rescale,
ndc_coordinates=ndc_coordinates,
)
def to_point_direction(self, normalize_moment=True):
"""
Convert to point direction representation <O, D>.
Returns:
rays: (..., 6).
"""
if self._is_plucker:
direction = torch.nn.functional.normalize(self.rays[..., :3], dim=-1)
moment = self.rays[..., 3:]
if normalize_moment:
c = torch.linalg.norm(direction, dim=-1, keepdim=True)
moment = moment / c
points = torch.cross(direction, moment, dim=-1)
return Rays(
rays=torch.cat((points, direction), dim=-1),
is_plucker=False,
ndc_coordinates=self.ndc_coordinates,
)
else:
return self
def to_plucker(self):
"""
Convert to plucker representation <D, OxD>.
"""
if self.is_plucker:
return self
else:
ray = self.rays.clone()
ray_origins = ray[..., :3]
ray_directions = ray[..., 3:]
# Normalize ray directions to unit vectors
ray_directions = ray_directions / ray_directions.norm(dim=-1, keepdim=True)
plucker_normal = torch.cross(ray_origins, ray_directions, dim=-1)
new_ray = torch.cat([ray_directions, plucker_normal], dim=-1)
return Rays(
rays=new_ray, is_plucker=True, ndc_coordinates=self.ndc_coordinates
)
def get_directions(self, normalize=True):
if self.is_plucker:
directions = self.rays[..., :3]
else:
directions = self.rays[..., 3:]
if normalize:
directions = torch.nn.functional.normalize(directions, dim=-1)
return directions
def get_origins(self):
if self.is_plucker:
origins = self.to_point_direction().get_origins()
else:
origins = self.rays[..., :3]
return origins
def get_moments(self):
if self.is_plucker:
moments = self.rays[..., 3:]
else:
moments = self.to_plucker().get_moments()
return moments
def get_ndc_coordinates(self):
return self.ndc_coordinates
@property
def is_plucker(self):
return self._is_plucker
@property
def device(self):
return self.rays.device
def __repr__(self, *args, **kwargs):
ray_str = self.rays.__repr__(*args, **kwargs)[6:] # remove "tensor"
if self._is_plucker:
return "PluRay" + ray_str
else:
return "DirRay" + ray_str
def to(self, device):
self.rays = self.rays.to(device)
def clone(self):
return Rays(rays=self.rays.clone(), is_plucker=self._is_plucker)
@property
def shape(self):
return self.rays.shape
def visualize(self):
directions = torch.nn.functional.normalize(self.get_directions(), dim=-1).cpu()
moments = torch.nn.functional.normalize(self.get_moments(), dim=-1).cpu()
return (directions + 1) / 2, (moments + 1) / 2
def to_ray_bundle(self, length=0.3, recenter=True):
lengths = torch.ones_like(self.get_origins()[..., :2]) * length
lengths[..., 0] = 0
if recenter:
centers, _ = intersect_skew_lines_high_dim(
self.get_origins(), self.get_directions()
)
centers = centers.unsqueeze(1).repeat(1, lengths.shape[1], 1)
else:
centers = self.get_origins()
return RayBundle(
origins=centers,
directions=self.get_directions(),
lengths=lengths,
xys=self.get_directions(),
)
def cameras_to_rays(
cameras,
crop_parameters,
use_half_pix=True,
use_plucker=True,
num_patches_x=16,
num_patches_y=16,
):
"""
Unprojects rays from camera center to grid on image plane.
Args:
cameras: Pytorch3D cameras to unproject. Can be batched.
crop_parameters: Crop parameters in NDC (cc_x, cc_y, crop_width, scale).
Shape is (B, 4).
use_half_pix: If True, use half pixel offset (Default: True).
use_plucker: If True, return rays in plucker coordinates (Default: False).
num_patches_x: Number of patches in x direction (Default: 16).
num_patches_y: Number of patches in y direction (Default: 16).
"""
unprojected = []
crop_parameters_list = (
crop_parameters if crop_parameters is not None else [None for _ in cameras]
)
for camera, crop_param in zip(cameras, crop_parameters_list):
xyd_grid = compute_ndc_coordinates(
crop_parameters=crop_param,
use_half_pix=use_half_pix,
num_patches_x=num_patches_x,
num_patches_y=num_patches_y,
)
unprojected.append(
camera.unproject_points(
xyd_grid.reshape(-1, 3), world_coordinates=True, from_ndc=True
)
)
unprojected = torch.stack(unprojected, dim=0) # (N, P, 3)
origins = cameras.get_camera_center().unsqueeze(1) # (N, 1, 3)
origins = origins.repeat(1, num_patches_x * num_patches_y, 1) # (N, P, 3)
directions = unprojected - origins
rays = Rays(
origins=origins,
directions=directions,
crop_parameters=crop_parameters,
num_patches_x=num_patches_x,
num_patches_y=num_patches_y,
)
if use_plucker:
return rays.to_plucker()
return rays
def rays_to_cameras(
rays,
crop_parameters,
num_patches_x=16,
num_patches_y=16,
use_half_pix=True,
sampled_ray_idx=None,
cameras=None,
focal_length=(3.453,),
):
"""
If cameras are provided, will use those intrinsics. Otherwise will use the provided
focal_length(s). Dataset default is 3.32.
Args:
rays (Rays): (N, P, 6)
crop_parameters (torch.Tensor): (N, 4)
"""
device = rays.device
origins = rays.get_origins()
directions = rays.get_directions()
camera_centers, _ = intersect_skew_lines_high_dim(origins, directions)
# Retrieve target rays
if cameras is None:
if len(focal_length) == 1:
focal_length = focal_length * rays.shape[0]
I_camera = PerspectiveCameras(focal_length=focal_length, device=device)
else:
# Use same intrinsics but reset to identity extrinsics.
I_camera = cameras.clone()
I_camera.R[:] = torch.eye(3, device=device)
I_camera.T[:] = torch.zeros(3, device=device)
I_patch_rays = cameras_to_rays(
cameras=I_camera,
num_patches_x=num_patches_x,
num_patches_y=num_patches_y,
use_half_pix=use_half_pix,
crop_parameters=crop_parameters,
).get_directions()
if sampled_ray_idx is not None:
I_patch_rays = I_patch_rays[:, sampled_ray_idx]
# Compute optimal rotation to align rays
R = torch.zeros_like(I_camera.R)
for i in range(len(I_camera)):
R[i] = compute_optimal_rotation_alignment(
I_patch_rays[i],
directions[i],
)
# Construct and return rotated camera
cam = I_camera.clone()
cam.R = R
cam.T = -torch.matmul(R.transpose(1, 2), camera_centers.unsqueeze(2)).squeeze(2)
return cam
# https://www.reddit.com/r/learnmath/comments/v1crd7/linear_algebra_qr_to_ql_decomposition/
def ql_decomposition(A):
P = torch.tensor([[0, 0, 1], [0, 1, 0], [1, 0, 0]], device=A.device).float()
A_tilde = torch.matmul(A, P)
Q_tilde, R_tilde = torch.linalg.qr(A_tilde)
Q = torch.matmul(Q_tilde, P)
L = torch.matmul(torch.matmul(P, R_tilde), P)
d = torch.diag(L)
Q[:, 0] *= torch.sign(d[0])
Q[:, 1] *= torch.sign(d[1])
Q[:, 2] *= torch.sign(d[2])
L[0] *= torch.sign(d[0])
L[1] *= torch.sign(d[1])
L[2] *= torch.sign(d[2])
return Q, L
def rays_to_cameras_homography(
rays,
crop_parameters,
num_patches_x=16,
num_patches_y=16,
use_half_pix=True,
sampled_ray_idx=None,
reproj_threshold=0.2,
):
"""
Args:
rays (Rays): (N, P, 6)
crop_parameters (torch.Tensor): (N, 4)
"""
device = rays.device
origins = rays.get_origins()
directions = rays.get_directions()
camera_centers, _ = intersect_skew_lines_high_dim(origins, directions)
# Retrieve target rays
I_camera = PerspectiveCameras(focal_length=[1] * rays.shape[0], device=device)
I_patch_rays = cameras_to_rays(
cameras=I_camera,
num_patches_x=num_patches_x,
num_patches_y=num_patches_y,
use_half_pix=use_half_pix,
crop_parameters=crop_parameters,
).get_directions()
if sampled_ray_idx is not None:
I_patch_rays = I_patch_rays[:, sampled_ray_idx]
# Compute optimal rotation to align rays
Rs = []
focal_lengths = []
principal_points = []
for i in range(rays.shape[-3]):
R, f, pp = compute_optimal_rotation_intrinsics(
I_patch_rays[i],
directions[i],
reproj_threshold=reproj_threshold,
)
Rs.append(R)
focal_lengths.append(f)
principal_points.append(pp)
R = torch.stack(Rs)
focal_lengths = torch.stack(focal_lengths)
principal_points = torch.stack(principal_points)
T = -torch.matmul(R.transpose(1, 2), camera_centers.unsqueeze(2)).squeeze(2)
return PerspectiveCameras(
R=R,
T=T,
focal_length=focal_lengths,
principal_point=principal_points,
device=device,
)
def compute_optimal_rotation_alignment(A, B):
"""
Compute optimal R that minimizes: || A - B @ R ||_F
Args:
A (torch.Tensor): (N, 3)
B (torch.Tensor): (N, 3)
Returns:
R (torch.tensor): (3, 3)
"""
# normally with R @ B, this would be A @ B.T
H = B.T @ A
U, _, Vh = torch.linalg.svd(H, full_matrices=True)
s = torch.linalg.det(U @ Vh)
S_prime = torch.diag(torch.tensor([1, 1, torch.sign(s)], device=A.device))
return U @ S_prime @ Vh
def compute_optimal_rotation_intrinsics(
rays_origin, rays_target, z_threshold=1e-4, reproj_threshold=0.2
):
"""
Note: for some reason, f seems to be 1/f.
Args:
rays_origin (torch.Tensor): (N, 3)
rays_target (torch.Tensor): (N, 3)
z_threshold (float): Threshold for z value to be considered valid.
Returns:
R (torch.tensor): (3, 3)
focal_length (torch.tensor): (2,)
principal_point (torch.tensor): (2,)
"""
device = rays_origin.device
z_mask = torch.logical_and(
torch.abs(rays_target) > z_threshold, torch.abs(rays_origin) > z_threshold
)[:, 2]
rays_target = rays_target[z_mask]
rays_origin = rays_origin[z_mask]
rays_origin = rays_origin[:, :2] / rays_origin[:, -1:]
rays_target = rays_target[:, :2] / rays_target[:, -1:]
A, _ = cv2.findHomography(
rays_origin.cpu().numpy(),
rays_target.cpu().numpy(),
cv2.RANSAC,
reproj_threshold,
)
A = torch.from_numpy(A).float().to(device)
if torch.linalg.det(A) < 0:
A = -A
R, L = ql_decomposition(A)
L = L / L[2][2]
f = torch.stack((L[0][0], L[1][1]))
pp = torch.stack((L[2][0], L[2][1]))
return R, f, pp
def compute_ndc_coordinates(
crop_parameters=None,
use_half_pix=True,
num_patches_x=16,
num_patches_y=16,
device=None,
):
"""
Computes NDC Grid using crop_parameters. If crop_parameters is not provided,
then it assumes that the crop is the entire image (corresponding to an NDC grid
where top left corner is (1, 1) and bottom right corner is (-1, -1)).
"""
if crop_parameters is None:
cc_x, cc_y, width = 0, 0, 2
else:
if len(crop_parameters.shape) > 1:
return torch.stack(
[
compute_ndc_coordinates(
crop_parameters=crop_param,
use_half_pix=use_half_pix,
num_patches_x=num_patches_x,
num_patches_y=num_patches_y,
)
for crop_param in crop_parameters
],
dim=0,
)
device = crop_parameters.device
cc_x, cc_y, width, _ = crop_parameters
dx = 1 / num_patches_x
dy = 1 / num_patches_y
if use_half_pix:
min_y = 1 - dy
max_y = -min_y
min_x = 1 - dx
max_x = -min_x
else:
min_y = min_x = 1
max_y = -1 + 2 * dy
max_x = -1 + 2 * dx
y, x = torch.meshgrid(
torch.linspace(min_y, max_y, num_patches_y, dtype=torch.float32, device=device),
torch.linspace(min_x, max_x, num_patches_x, dtype=torch.float32, device=device),
indexing="ij",
)
x_prime = x * width / 2 - cc_x
y_prime = y * width / 2 - cc_y
xyd_grid = torch.stack([x_prime, y_prime, torch.ones_like(x)], dim=-1)
return xyd_grid
|