File size: 4,503 Bytes
038856e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
from typing import Callable, Optional

import warnings

import torch
import torch.nn as nn

try:
    from apex.normalization import FusedRMSNorm as RMSNorm
except ImportError:
    warnings.warn("Cannot import apex RMSNorm, switch to vanilla implementation")


class RMSNorm(torch.nn.Module):
    def __init__(self, dim: int, eps: float = 1e-6):
        """
        Initialize the RMSNorm normalization layer.
        Args:
            dim (int): The dimension of the input tensor.
            eps (float, optional): A small value added to the denominator for numerical stability. Default is 1e-6.
        Attributes:
            eps (float): A small value added to the denominator for numerical stability.
            weight (nn.Parameter): Learnable scaling parameter.
        """
        super().__init__()
        self.eps = eps
        self.weight = nn.Parameter(torch.ones(dim))
        
    def _norm(self, x):
        """
        Apply the RMSNorm normalization to the input tensor.
        Args:
            x (torch.Tensor): The input tensor.
        Returns:
            torch.Tensor: The normalized tensor.
        """
        return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps)
    
    def forward(self, x):
        """
        Forward pass through the RMSNorm layer.
        Args:
            x (torch.Tensor): The input tensor.
        Returns:
            torch.Tensor: The output tensor after applying RMSNorm.
        """
        output = self._norm(x.float()).type_as(x)
        return output * self.weight

            
def modulate(x, scale):
    return x * (1 + scale.unsqueeze(1))

class LLamaFeedForward(nn.Module):
    """ 
    Corresponds to the FeedForward layer in Next DiT.
    """
    def __init__(
        self,
        dim: int,
        hidden_dim: int,
        multiple_of: int,
        ffn_dim_multiplier: Optional[float] = None,
        zeros_initialize: bool = True,
        dtype: torch.dtype = torch.float32,
    ):
        super().__init__()
        self.dim = dim
        self.hidden_dim = hidden_dim
        self.multiple_of = multiple_of
        self.ffn_dim_multiplier = ffn_dim_multiplier
        self.zeros_initialize = zeros_initialize
        self.dtype = dtype

        # Compute hidden_dim based on the given formula
        hidden_dim_calculated = int(2 * self.hidden_dim / 3)
        if self.ffn_dim_multiplier is not None:
            hidden_dim_calculated = int(self.ffn_dim_multiplier * hidden_dim_calculated)
        hidden_dim_calculated = self.multiple_of * ((hidden_dim_calculated + self.multiple_of - 1) // self.multiple_of)

        # Define linear layers
        self.w1 = nn.Linear(self.dim, hidden_dim_calculated, bias=False)
        self.w2 = nn.Linear(hidden_dim_calculated, self.dim, bias=False)
        self.w3 = nn.Linear(self.dim, hidden_dim_calculated, bias=False)

        # Initialize weights
        if self.zeros_initialize:
            nn.init.zeros_(self.w2.weight)
        else:
            nn.init.xavier_uniform_(self.w2.weight)
        nn.init.xavier_uniform_(self.w1.weight)
        nn.init.xavier_uniform_(self.w3.weight)

    def _forward_silu_gating(self, x1, x3):
        return F.silu(x1) * x3

    def forward(self, x):
        return self.w2(self._forward_silu_gating(self.w1(x), self.w3(x)))

class FinalLayer(nn.Module):
    """
    The final layer of Next-DiT.
    """
    def __init__(self, hidden_size: int, patch_size: int, out_channels: int):
        super().__init__()
        self.hidden_size = hidden_size
        self.patch_size = patch_size
        self.out_channels = out_channels

        # LayerNorm without learnable parameters (elementwise_affine=False)
        self.norm_final = nn.LayerNorm(self.hidden_size, eps=1e-6, elementwise_affine=False)
        self.linear = nn.Linear(self.hidden_size, np.prod(self.patch_size) * self.out_channels, bias=True)
        nn.init.zeros_(self.linear.weight)
        nn.init.zeros_(self.linear.bias)

        self.adaLN_modulation = nn.Sequential(
            nn.SiLU(),
            nn.Linear(self.hidden_size, self.hidden_size),
        )
        # Initialize the last layer with zeros
        nn.init.zeros_(self.adaLN_modulation[1].weight)
        nn.init.zeros_(self.adaLN_modulation[1].bias)

    def forward(self, x, c):
        scale = self.adaLN_modulation(c)
        x = modulate(self.norm_final(x), scale)
        x = self.linear(x)
        return x