Spaces:
Running
on
Zero
Running
on
Zero
File size: 12,250 Bytes
038856e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 |
import os
import json
import random
from PIL import Image
import torch
from typing import List, Tuple, Union
from torch.utils.data import Dataset
from torchvision import transforms
import torchvision.transforms as T
from onediffusion.dataset.utils import *
import glob
from onediffusion.dataset.raydiff_utils import cameras_to_rays, first_camera_transform, normalize_cameras
from onediffusion.dataset.transforms import CenterCropResizeImage
from pytorch3d.renderer import PerspectiveCameras
import numpy as np
def _cameras_from_opencv_projection(
R: torch.Tensor,
tvec: torch.Tensor,
camera_matrix: torch.Tensor,
image_size: torch.Tensor,
do_normalize_cameras,
normalize_scale,
) -> PerspectiveCameras:
focal_length = torch.stack([camera_matrix[:, 0, 0], camera_matrix[:, 1, 1]], dim=-1)
principal_point = camera_matrix[:, :2, 2]
# Retype the image_size correctly and flip to width, height.
image_size_wh = image_size.to(R).flip(dims=(1,))
# Screen to NDC conversion:
# For non square images, we scale the points such that smallest side
# has range [-1, 1] and the largest side has range [-u, u], with u > 1.
# This convention is consistent with the PyTorch3D renderer, as well as
# the transformation function `get_ndc_to_screen_transform`.
scale = image_size_wh.to(R).min(dim=1, keepdim=True)[0] / 2.0
scale = scale.expand(-1, 2)
c0 = image_size_wh / 2.0
# Get the PyTorch3D focal length and principal point.
focal_pytorch3d = focal_length / scale
p0_pytorch3d = -(principal_point - c0) / scale
# For R, T we flip x, y axes (opencv screen space has an opposite
# orientation of screen axes).
# We also transpose R (opencv multiplies points from the opposite=left side).
R_pytorch3d = R.clone().permute(0, 2, 1)
T_pytorch3d = tvec.clone()
R_pytorch3d[:, :, :2] *= -1
T_pytorch3d[:, :2] *= -1
cams = PerspectiveCameras(
R=R_pytorch3d,
T=T_pytorch3d,
focal_length=focal_pytorch3d,
principal_point=p0_pytorch3d,
image_size=image_size,
device=R.device,
)
if do_normalize_cameras:
cams, _ = normalize_cameras(cams, scale=normalize_scale)
cams = first_camera_transform(cams, rotation_only=False)
return cams
def calculate_rays(Ks, sizes, Rs, Ts, target_size, use_plucker=True, do_normalize_cameras=False, normalize_scale=1.0):
cameras = _cameras_from_opencv_projection(
R=Rs,
tvec=Ts,
camera_matrix=Ks,
image_size=sizes,
do_normalize_cameras=do_normalize_cameras,
normalize_scale=normalize_scale
)
rays_embedding = cameras_to_rays(
cameras=cameras,
num_patches_x=target_size,
num_patches_y=target_size,
crop_parameters=None,
use_plucker=use_plucker
)
return rays_embedding.rays
def convert_rgba_to_rgb_white_bg(image):
"""Convert RGBA image to RGB with white background"""
if image.mode == 'RGBA':
# Create a white background
background = Image.new('RGBA', image.size, (255, 255, 255, 255))
# Composite the image onto the white background
return Image.alpha_composite(background, image).convert('RGB')
return image.convert('RGB')
class MultiviewDataset(Dataset):
def __init__(
self,
scene_folders: str,
samples_per_set: Union[int, Tuple[int, int]], # Changed from samples_per_set to samples_range
transform=None,
caption_keys: Union[str, List] = "caption",
multiscale=False,
aspect_ratio_type=ASPECT_RATIO_512,
c2w_scaling=1.7,
default_max_distance=1, # default max distance from all camera of a scene ,
do_normalize=True, # whether normalize translation of c2w with max_distance
swap_xz=False, # whether swap x and z axis of 3D scenes
valid_paths: str = "",
frame_sliding_windows: float = None # limit all sampled frames to be within this window, so that camera poses won't be too different
):
if not isinstance(samples_per_set, tuple) and not isinstance(samples_per_set, list):
samples_per_set = (samples_per_set, samples_per_set)
self.samples_range = samples_per_set # Tuple of (min_samples, max_samples)
self.transform = transform
self.caption_keys = caption_keys if isinstance(caption_keys, list) else [caption_keys]
self.aspect_ratio = aspect_ratio_type
self.scene_folders = sorted(glob.glob(scene_folders))
# filter out scene folders that do not have transforms.json
self.scene_folders = list(filter(lambda x: os.path.exists(os.path.join(x, "transforms.json")), self.scene_folders))
# if valid_paths.txt exists, only use paths in that file
if os.path.exists(valid_paths):
with open(valid_paths, 'r') as f:
valid_scene_folders = f.read().splitlines()
self.scene_folders = sorted(valid_scene_folders)
self.c2w_scaling = c2w_scaling
self.do_normalize = do_normalize
self.default_max_distance = default_max_distance
self.swap_xz = swap_xz
self.frame_sliding_windows = frame_sliding_windows
if multiscale:
assert self.aspect_ratio in [ASPECT_RATIO_512, ASPECT_RATIO_1024, ASPECT_RATIO_2048, ASPECT_RATIO_2880]
if self.aspect_ratio in [ASPECT_RATIO_2048, ASPECT_RATIO_2880]:
self.interpolate_model = T.InterpolationMode.LANCZOS
self.ratio_index = {}
self.ratio_nums = {}
for k, v in self.aspect_ratio.items():
self.ratio_index[float(k)] = [] # used for self.getitem
self.ratio_nums[float(k)] = 0 # used for batch-sampler
def __len__(self):
return len(self.scene_folders)
def __getitem__(self, idx):
try:
scene_path = self.scene_folders[idx]
if os.path.exists(os.path.join(scene_path, "images")):
image_folder = os.path.join(scene_path, "images")
downscale_factor = 1
elif os.path.exists(os.path.join(scene_path, "images_4")):
image_folder = os.path.join(scene_path, "images_4")
downscale_factor = 1 / 4
elif os.path.exists(os.path.join(scene_path, "images_8")):
image_folder = os.path.join(scene_path, "images_8")
downscale_factor = 1 / 8
else:
raise NotImplementedError
json_path = os.path.join(scene_path, "transforms.json")
caption_path = os.path.join(scene_path, "caption.json")
image_files = os.listdir(image_folder)
with open(json_path, 'r') as f:
json_data = json.load(f)
height, width = json_data['h'], json_data['w']
dh, dw = int(height * downscale_factor), int(width * downscale_factor)
fl_x, fl_y = json_data['fl_x'] * downscale_factor, json_data['fl_y'] * downscale_factor
cx = dw // 2
cy = dh // 2
frame_list = json_data['frames']
# Randomly select number of samples
samples_per_set = random.randint(self.samples_range[0], self.samples_range[1])
# uniformly for all scenes
if self.frame_sliding_windows is None:
selected_indices = random.sample(range(len(frame_list)), min(samples_per_set, len(frame_list)))
# limit the multiview to be in a sliding window (to avoid catastrophic difference in camera angles)
else:
# Determine the starting index of the sliding window
if len(frame_list) <= self.frame_sliding_windows:
# If the frame list is smaller than or equal to X, use the entire list
window_start = 0
window_end = len(frame_list)
else:
# Randomly select a starting point for the window
window_start = random.randint(0, len(frame_list) - self.frame_sliding_windows)
window_end = window_start + self.frame_sliding_windows
# Get the indices within the sliding window
window_indices = list(range(window_start, window_end))
# Randomly sample indices from the window
selected_indices = random.sample(window_indices, samples_per_set)
image_files = [os.path.basename(frame_list[i]['file_path']) for i in selected_indices]
image_paths = [os.path.join(image_folder, file) for file in image_files]
# Load images and convert RGBA to RGB with white background
images = [convert_rgba_to_rgb_white_bg(Image.open(image_path)) for image_path in image_paths]
if self.transform:
images = [self.transform(image) for image in images]
else:
closest_size, closest_ratio = self.aspect_ratio['1.0'], 1.0
closest_size = tuple(map(int, closest_size))
transform = T.Compose([
T.ToTensor(),
CenterCropResizeImage(closest_size),
T.Normalize([.5], [.5]),
])
images = [transform(image) for image in images]
images = torch.stack(images)
c2ws = [frame_list[i]['transform_matrix'] for i in selected_indices]
c2ws = torch.tensor(c2ws).reshape(-1, 4, 4)
# max_distance = json_data.get('max_distance', self.default_max_distance)
# if 'max_distance' not in json_data.keys():
# print(f"not found `max_distance` in json path: {json_path}")
if self.swap_xz:
swap_xz = torch.tensor([[[0, 0, 1., 0],
[0, 1., 0, 0],
[-1., 0, 0, 0],
[0, 0, 0, 1.]]])
c2ws = swap_xz @ c2ws
# OPENGL to OPENCV
c2ws[:, 0:3, 1:3] *= -1
c2ws = c2ws[:, [1, 0, 2, 3], :]
c2ws[:, 2, :] *= -1
w2cs = torch.inverse(c2ws)
K = torch.tensor([[[fl_x, 0, cx], [0, fl_y, cy], [0, 0, 1]]]).repeat(len(c2ws), 1, 1)
Rs = w2cs[:, :3, :3]
Ts = w2cs[:, :3, 3]
sizes = torch.tensor([[dh, dw]]).repeat(len(c2ws), 1)
# get ray embedding and padding last dimension to 16 (num channels of VAE)
# rays_od = calculate_rays(K, sizes, Rs, Ts, closest_size[0] // 8, use_plucker=False, do_normalize_cameras=self.do_normalize, normalize_scale=self.c2w_scaling)
rays = calculate_rays(K, sizes, Rs, Ts, closest_size[0] // 8, do_normalize_cameras=self.do_normalize, normalize_scale=self.c2w_scaling)
rays = rays.reshape(samples_per_set, closest_size[0] // 8, closest_size[1] // 8, 6)
# padding = (0, 10) # pad the last dimension to 16
# rays = torch.nn.functional.pad(rays, padding, "constant", 0)
rays = torch.cat([rays, rays, rays[..., :4]], dim=-1) * 1.658
if os.path.exists(caption_path):
with open(caption_path, 'r') as f:
caption_key = random.choice(self.caption_keys)
caption = json.load(f).get(caption_key, "")
else:
caption = ""
caption = "[[multiview]] " + caption if caption else "[[multiview]]"
return {
'pixel_values': images,
'rays': rays,
'aspect_ratio': closest_ratio,
'caption': caption,
'height': dh,
'width': dw,
# 'origins': rays_od[..., :3],
# 'dirs': rays_od[..., 3:6]
}
except Exception as e:
return self.__getitem__(random.randint(0, len(self.scene_folders) - 1))
|