Spaces:
Running
on
Zero
Running
on
Zero
import torch | |
import torch.nn.functional as F | |
def crop(image, i, j, h, w): | |
""" | |
Args: | |
image (torch.tensor): Image to be cropped. Size is (C, H, W) | |
""" | |
if len(image.size()) != 3: | |
raise ValueError("image should be a 3D tensor") | |
return image[..., i : i + h, j : j + w] | |
def resize(image, target_size, interpolation_mode): | |
if len(target_size) != 2: | |
raise ValueError(f"target size should be tuple (height, width), instead got {target_size}") | |
return F.interpolate(image.unsqueeze(0), size=target_size, mode=interpolation_mode, align_corners=False).squeeze(0) | |
def resize_scale(image, target_size, interpolation_mode): | |
if len(target_size) != 2: | |
raise ValueError(f"target size should be tuple (height, width), instead got {target_size}") | |
H, W = image.size(-2), image.size(-1) | |
scale_ = target_size[0] / min(H, W) | |
return F.interpolate(image.unsqueeze(0), scale_factor=scale_, mode=interpolation_mode, align_corners=False).squeeze(0) | |
def resized_crop(image, i, j, h, w, size, interpolation_mode="bilinear"): | |
""" | |
Do spatial cropping and resizing to the image | |
Args: | |
image (torch.tensor): Image to be cropped. Size is (C, H, W) | |
i (int): i in (i,j) i.e coordinates of the upper left corner. | |
j (int): j in (i,j) i.e coordinates of the upper left corner. | |
h (int): Height of the cropped region. | |
w (int): Width of the cropped region. | |
size (tuple(int, int)): height and width of resized image | |
Returns: | |
image (torch.tensor): Resized and cropped image. Size is (C, H, W) | |
""" | |
if len(image.size()) != 3: | |
raise ValueError("image should be a 3D torch.tensor") | |
image = crop(image, i, j, h, w) | |
image = resize(image, size, interpolation_mode) | |
return image | |
def center_crop(image, crop_size): | |
if len(image.size()) != 3: | |
raise ValueError("image should be a 3D torch.tensor") | |
h, w = image.size(-2), image.size(-1) | |
th, tw = crop_size | |
if h < th or w < tw: | |
raise ValueError("height and width must be no smaller than crop_size") | |
i = int(round((h - th) / 2.0)) | |
j = int(round((w - tw) / 2.0)) | |
return crop(image, i, j, th, tw) | |
def center_crop_using_short_edge(image): | |
if len(image.size()) != 3: | |
raise ValueError("image should be a 3D torch.tensor") | |
h, w = image.size(-2), image.size(-1) | |
if h < w: | |
th, tw = h, h | |
i = 0 | |
j = int(round((w - tw) / 2.0)) | |
else: | |
th, tw = w, w | |
i = int(round((h - th) / 2.0)) | |
j = 0 | |
return crop(image, i, j, th, tw) | |
class CenterCropResizeImage: | |
""" | |
Resize the image while maintaining aspect ratio, and then crop it to the desired size. | |
The resizing is done such that the area of padding/cropping is minimized. | |
""" | |
def __init__(self, size, interpolation_mode="bilinear"): | |
if isinstance(size, tuple): | |
if len(size) != 2: | |
raise ValueError(f"Size should be a tuple (height, width), instead got {size}") | |
self.size = size | |
else: | |
self.size = (size, size) | |
self.interpolation_mode = interpolation_mode | |
def __call__(self, image): | |
""" | |
Args: | |
image (torch.Tensor): Image to be resized and cropped. Size is (C, H, W) | |
Returns: | |
torch.Tensor: Resized and cropped image. Size is (C, target_height, target_width) | |
""" | |
target_height, target_width = self.size | |
target_aspect = target_width / target_height | |
# Get current image shape and aspect ratio | |
_, height, width = image.shape | |
height, width = float(height), float(width) | |
current_aspect = width / height | |
# Calculate crop dimensions | |
if current_aspect > target_aspect: | |
# Image is wider than target, crop width | |
crop_height = height | |
crop_width = height * target_aspect | |
else: | |
# Image is taller than target, crop height | |
crop_height = width / target_aspect | |
crop_width = width | |
# Calculate crop coordinates (center crop) | |
y1 = (height - crop_height) / 2 | |
x1 = (width - crop_width) / 2 | |
# Perform the crop | |
cropped_image = crop(image, int(y1), int(x1), int(crop_height), int(crop_width)) | |
# Resize the cropped image to the target size | |
resized_image = resize(cropped_image, self.size, self.interpolation_mode) | |
return resized_image | |
# Example usage | |
if __name__ == "__main__": | |
# Create a sample image tensor | |
sample_image = torch.rand(3, 480, 640) # (C, H, W) | |
# Initialize the transform | |
transform = CenterCropResizeImage(size=(224, 224), interpolation_mode="bilinear") | |
# Apply the transform | |
transformed_image = transform(sample_image) | |
print(f"Original image shape: {sample_image.shape}") | |
print(f"Transformed image shape: {transformed_image.shape}") |