poser-tf / poser.py
leonelhs's picture
inis space
9a02a1c
raw
history blame
4.69 kB
#############################################################################
#
# Source from:
# https://www.tensorflow.org/hub/tutorials/movenet
#
#
#############################################################################
import PIL.Image
import PIL.ImageOps
import numpy as np
import tensorflow as tf
from PIL import ImageDraw
from huggingface_hub import snapshot_download
# Dictionary that maps from joint names to keypoint indices.
KEYPOINT_DICT = {
'nose': 0,
'left_eye': 1, 'right_eye': 2,
'left_ear': 3, 'right_ear': 4,
'left_shoulder': 5, 'right_shoulder': 6,
'left_elbow': 7, 'right_elbow': 8,
'left_wrist': 9, 'right_wrist': 10,
'left_hip': 11, 'right_hip': 12,
'left_knee': 13, 'right_knee': 14,
'left_ankle': 15, 'right_ankle': 16
}
COLOR_DICT = {
(0, 1): 'Magenta',
(0, 2): 'Cyan',
(1, 3): 'Magenta',
(2, 4): 'Cyan',
(0, 5): 'Magenta',
(0, 6): 'Cyan',
(5, 7): 'Magenta',
(7, 9): 'Magenta',
(6, 8): 'Cyan',
(8, 10): 'Cyan',
(5, 6): 'Yellow',
(5, 11): 'Magenta',
(6, 12): 'Cyan',
(11, 12): 'Yellow',
(11, 13): 'Magenta',
(13, 15): 'Magenta',
(12, 14): 'Cyan',
(14, 16): 'Cyan'
}
def process_keypoints(keypoints, height, width, threshold=0.22):
"""Returns high confidence keypoints and edges for visualization.
Args:
keypoints: A numpy array with shape [1, 1, 17, 3] representing
the keypoint coordinates and scores returned from the MoveNet model.
height: height of the image in pixels.
width: width of the image in pixels.
threshold: minimum confidence score for a keypoint to be
visualized.
Returns:
A (joints, bones, colors) containing:
* the coordinates of all keypoints of all detected entities;
* the coordinates of all skeleton edges of all detected entities;
* the colors in which the edges should be plotted.
"""
keypoints_all = []
keypoint_edges_all = []
colors = []
num_instances, _, _, _ = keypoints.shape
for idx in range(num_instances):
kpts_x = keypoints[0, idx, :, 1]
kpts_y = keypoints[0, idx, :, 0]
kpts_scores = keypoints[0, idx, :, 2]
kpts_absolute_xy = np.stack(
[width * np.array(kpts_x), height * np.array(kpts_y)], axis=-1)
kpts_above_thresh_absolute = kpts_absolute_xy[
kpts_scores > threshold, :]
keypoints_all.append(kpts_above_thresh_absolute)
for edge_pair, color in COLOR_DICT.items():
if (kpts_scores[edge_pair[0]] > threshold and
kpts_scores[edge_pair[1]] > threshold):
x_start = kpts_absolute_xy[edge_pair[0], 0]
y_start = kpts_absolute_xy[edge_pair[0], 1]
x_end = kpts_absolute_xy[edge_pair[1], 0]
y_end = kpts_absolute_xy[edge_pair[1], 1]
line_seg = np.array([[x_start, y_start], [x_end, y_end]])
keypoint_edges_all.append(line_seg)
colors.append(color)
if keypoints_all:
joints = np.concatenate(keypoints_all, axis=0)
else:
joints = np.zeros((0, 17, 2))
if keypoint_edges_all:
bones = np.stack(keypoint_edges_all, axis=0)
else:
bones = np.zeros((0, 2, 2))
return joints, bones, colors
def draw_bones(pixmap: PIL.Image, keypoints):
draw = ImageDraw.Draw(pixmap)
joints, bones, colors = process_keypoints(keypoints, pixmap.height, pixmap.width)
for bone, color in zip(bones.tolist(), colors):
draw.line((*bone[0], *bone[1]), fill=color, width=4)
radio = 3
for c_x, c_y in joints:
shape = [(c_x - radio, c_y - radio), (c_x + radio, c_y + radio)]
draw.ellipse(shape, fill="red", outline="red")
def movenet(image):
"""Runs detection on an input image.
Args:
image: A [1, height, width, 3] tensor represents the input image
pixels. Note that the height/width should already be resized and match the
expected input resolution of the model before passing into this function.
Returns:
A [1, 1, 17, 3] float numpy array representing the predicted keypoint
coordinates and scores.
"""
model_path = snapshot_download("leonelhs/movenet")
module = tf.saved_model.load(model_path)
model = module.signatures['serving_default']
# SavedModel format expects tensor type of int32.
image = tf.cast(image, dtype=tf.int32)
# Run model inference.
outputs = model(image)
# Output is a [1, 1, 17, 3] tensor.
return outputs['output_0'].numpy()