Spaces:
Sleeping
Sleeping
File size: 18,448 Bytes
9a96811 8a9db0e b6190b3 9a96811 4c86203 b6190b3 8a9db0e 9a96811 4c86203 87b80cc 9a96811 4c86203 8a9db0e 4c86203 8a9db0e 9a96811 4c86203 87b80cc 8a9db0e 9a96811 4c86203 9a96811 4c86203 9a96811 4c86203 8a9db0e bf29377 4c86203 9a96811 4c86203 b6190b3 4c86203 9a96811 8a9db0e 4c86203 87b80cc 9a96811 4c86203 9a96811 4c86203 9a96811 b6190b3 4c86203 8a9db0e bf29377 9a96811 8a9db0e 9a96811 bf29377 8a9db0e bf29377 8a9db0e bf29377 8a9db0e bf29377 4c86203 9a96811 b6190b3 9a96811 4c86203 bf29377 4c86203 9a96811 4c86203 9a96811 4c86203 9a96811 4c86203 b6190b3 4c86203 9a96811 4c86203 9a96811 4c86203 bf29377 4c86203 bf29377 4c86203 bf29377 4c86203 bf29377 4c86203 b6190b3 4c86203 bf29377 4c86203 bf29377 4c86203 bf29377 4c86203 b6190b3 4c86203 bf29377 4c86203 bf29377 4c86203 bf29377 4c86203 b6190b3 4c86203 bf29377 4c86203 bf29377 4c86203 bf29377 4c86203 b6190b3 4c86203 bf29377 8a9db0e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 |
from functools import partial, lru_cache
import duckdb
import gradio as gr
import json
import pandas as pd
import pyarrow as pa
import pyarrow.compute as pc
import requests
from huggingface_hub import HfApi
READ_PARQUET_FUNCTIONS = ("dd.read_parquet", "pd.read_parquet")
EMPTY_TABLE = pa.Table.from_pylist([{str(i): "" for i in range(4)}] * 10)
EMPTY_DF: pd.DataFrame = EMPTY_TABLE.to_pandas()
NUM_ROWS = 20
MAX_NUM_COLUMNS = 20
NUM_TRENDING_DATASETS = 10
NUM_USER_DATASETS = 10
css = """
.transparent-dropdown, .transparent-dropdown .container .wrap, .transparent-accordion {
background: var(--body-background-fill);
}
input {
-webkit-user-select: none;
-moz-user-select: none;
-ms-user-select: none;
user-select: none;
}
.cell-menu-button {
z-index: -1;
}
thead {
display: none;
}
.secondary-wrap:has(input[aria-expanded="true"]) {
background: var(--table-odd-background-fill);
}
.secondary-wrap:has(input[aria-expanded="true"])::after {
content: 'β΅';
margin-right: var(--size-10);
border-width: 1px;
border-color: var(--block-border-color);
border-radius: .23rem;
background-color: #141c2e;
padding-left: 2px;
font-size: .75rem;
color: var(--block-title-text-color);
}
.gradio-container {
padding: var(--size-4) 0 !important;
max-width: 98% !important;
}
"""
js = """
function load() {
// Set DataFrame readonly
MutationObserver = window.MutationObserver || window.WebKitMutationObserver;
var observer = new MutationObserver(function(mutations, observer) {
// fired when a mutation occurs
document.querySelectorAll('.readonly-dataframe div .table-wrap button svelte-virtual-table-viewport table tbody tr td .cell-wrap input').forEach(i => i.setAttribute("readonly", "true"));
});
// define what element should be observed by the observer
// and what types of mutations trigger the callback
observer.observe(document, {
subtree: true,
childList: true
});
// Run query on Enter in transform dropdown
document.querySelectorAll("input").forEach(i => {
if (i.parentElement.parentElement.parentElement.parentElement.parentElement.classList.contains("transform_dropdown")) {
i.onkeydown = (event) => {
if (event.code == "Enter") {
document.getElementById("run_button").click();
}
}
}
})
}
"""
text_functions_df = pd.read_csv("text_functions.tsv", delimiter="\t")
date_functions_df = pd.read_csv("date_functions.tsv", delimiter="\t")
list_functions_df = pd.read_csv("list_functions.tsv", delimiter="\t")
numeric_functions_df = pd.read_csv("numeric_functions.tsv", delimiter="\t")
time_functions_df = pd.read_csv("time_functions.tsv", delimiter="\t")
timestamp_functions_df = pd.read_csv("timestamp_functions.tsv", delimiter="\t")
@lru_cache(maxsize=3)
def duckdb_sql(query: str) -> duckdb.DuckDBPyRelation:
return duckdb.sql(query)
def prepare_function(func: str, placeholders: list[str], column_name: str) -> str:
prepared_func = func.split("(", 1)
for placeholder in placeholders:
if placeholder in prepared_func[-1]:
prepared_func[-1] = prepared_func[-1].replace(placeholder, column_name, 1)
return "(".join(prepared_func)
else:
return None
def prettify_df(df: pd.DataFrame):
return df.apply(lambda s: s.apply(str))
def get_prepared_functions_from_table(table: pa.Table) -> dict[str, list[str]]:
prepared_functions = {}
for field in table.schema:
if pa.types.is_integer(field.type) or pa.types.is_floating(field.type):
prepared_functions[field.name] = [prepare_function(numeric_func, ["x"], field.name) for numeric_func in numeric_functions_df.Name]
elif pa.types.is_string(field.type):
prepared_functions[field.name] = [prepare_function(text_func, ["string"], field.name) for text_func in text_functions_df.Name]
# try parsing json
if pc.all(pc.starts_with(table[field.name], "{")).as_py() or pc.all(pc.starts_with(table[field.name], "[")).as_py():
try:
json_parsed_table = pa.Table.from_pylist([{field.name: json.loads(row)} for row in table[field.name].to_pylist()])
parsed_type = str(duckdb.from_arrow(json_parsed_table).dtypes[0])
prepared_functions[field.name] = [f"CAST({field.name} as {parsed_type})"] + prepared_functions[field.name]
except Exception:
pass
elif pa.types.is_date(field.type):
prepared_functions[field.name] = [prepare_function(date_func, ["startdate", "date"], field.name) for date_func in date_functions_df.Name]
elif pa.types.is_list(field.type):
prepared_functions[field.name] = [prepare_function(list_func, ["list"], field.name) for list_func in list_functions_df.Name]
elif pa.types.is_time(field.type):
prepared_functions[field.name] = [prepare_function(time_func, ["starttime", "time"], field.name) for time_func in time_functions_df.Name]
elif pa.types.is_timestamp(field.type):
prepared_functions[field.name] = [prepare_function(timestamp_func, ["startdate", "timestamp"], field.name) for timestamp_func in timestamp_functions_df.Name]
elif pa.types.is_struct(field.type):
prepared_functions[field.name] = [f"{field.name}.{subfield.name}" for subfield in field.type.fields]
else:
prepared_functions[field.name] = []
prepared_functions[field.name] = [prepared_function for prepared_function in prepared_functions[field.name] if prepared_function]
return prepared_functions
with gr.Blocks(css=css, js=js) as demo:
loading_codes_json = gr.JSON(visible=False)
dataset_subset_split_textbox = gr.Textbox(visible=False)
input_table_state = gr.State()
run_button = gr.Button(visible=False, elem_id="run_button")
with gr.Row():
with gr.Column():
gr.Markdown("# <p style='text-align:center;'>π₯ DuckDB Spreadsheets π</p>\n\n<p style='text-align:center;'>Edit any dataset on Hugging Face (full list <a href='https://huggingface.co/datasets' target='_blank'>here</a>) using DuckDB functions (documentation <a href='https://duckdb.org/docs/sql/functions/overview' target='_blank'>here</a>)</p>")
with gr.Group():
with gr.Row():
dataset_dropdown = gr.Dropdown(label="Dataset", allow_custom_value=True, scale=10)
subset_dropdown = gr.Dropdown(info="Subset", allow_custom_value=True, show_label=False, visible=False, elem_classes="transparent-dropdown")
split_dropdown = gr.Dropdown(info="Split", allow_custom_value=True, show_label=False, visible=False, elem_classes="transparent-dropdown")
gr.LoginButton()
with gr.Row():
transform_dropdowns = [gr.Dropdown(choices=[column_name] + [prepare_function(text_func, "string", column_name) for text_func in text_functions_df.Name if "string" in text_func], value=column_name, container=False, interactive=True, allow_custom_value=True, visible=True, elem_classes="transform_dropdown") for column_name in EMPTY_DF.columns]
transform_dropdowns += [gr.Dropdown(choices=[None], value=None, container=False, interactive=True, allow_custom_value=True, visible=False, elem_classes="transform_dropdown") for _ in range(MAX_NUM_COLUMNS - len(transform_dropdowns))]
dataframe = gr.DataFrame(EMPTY_DF, column_widths=[f"{1/len(EMPTY_DF.columns):.0%}"] * len(EMPTY_DF.columns), interactive=True, elem_classes="readonly-dataframe")
with gr.Accordion("Show DuckDB SQL command", open=False, elem_classes="transparent-accordion"):
code_markdown = gr.Markdown()
def show_subset_dropdown(dataset: str):
if dataset and "/" not in dataset.strip().strip("/"):
return []
resp = requests.get(f"https://datasets-server.huggingface.co/compatible-libraries?dataset={dataset}", timeout=3).json()
loading_codes = ([lib["loading_codes"] for lib in resp.get("libraries", []) if lib["function"] in READ_PARQUET_FUNCTIONS] or [[]])[0] or []
subsets = [loading_code["config_name"] for loading_code in loading_codes]
subset = (subsets or [""])[0]
return dict(choices=subsets, value=subset, visible=len(subsets) > 1, key=hash(str(loading_codes))), loading_codes
def show_split_dropdown(subset: str, loading_codes: list[dict]):
splits = ([list(loading_code["arguments"]["splits"]) for loading_code in loading_codes if loading_code["config_name"] == subset] or [[]])[0]
split = (splits or [""])[0]
return dict(choices=splits, value=split, visible=len(splits) > 1, key=hash(str(loading_codes) + subset))
def show_input_dataframe(dataset: str, subset: str, split: str, loading_codes: list[dict]):
pattern = ([loading_code["arguments"]["splits"][split] for loading_code in loading_codes if loading_code["config_name"] == subset] or [None])[0]
if dataset and subset and split and pattern:
table = duckdb_sql(f"SELECT * FROM 'hf://datasets/{dataset}/{pattern}' LIMIT {NUM_ROWS}").arrow()
else:
table = EMPTY_TABLE
prepared_functions = get_prepared_functions_from_table(table)
new_transform_dropdowns = [dict(choices=[column_name] + prepared_functions[column_name], value=column_name, container=False, interactive=True, allow_custom_value=True, visible=True) for column_name in table.column_names]
new_transform_dropdowns += [dict(choices=[None], value=None, container=False, interactive=True, allow_custom_value=True, visible=False) for _ in range(MAX_NUM_COLUMNS - len(new_transform_dropdowns))]
df = table.to_pandas()
return [table, dict(value=prettify_df(df), column_widths=[f"{1/len(df.columns):.0%}"] * len(df.columns))] + new_transform_dropdowns
def set_dataframe(dataset: str, subset: str, split: str, loading_codes: list[dict], input_table: pa.Table, df: pd.DataFrame, *transforms, show_warning=True):
try:
table = duckdb.sql(f"SELECT {', '.join(transform for transform in transforms if transform)} FROM input_table;").arrow()
except Exception as e:
if show_warning:
gr.Warning(f"{type(e).__name__}: {e}")
return {
dataframe: df
}
prepared_functions = get_prepared_functions_from_table(table)
new_transform_dropdowns = [dict(choices=list({original_column_name: None, column_name: None}) + prepared_functions[column_name], value=column_name, container=False, interactive=True, allow_custom_value=True, visible=True) for original_column_name, column_name in zip(input_table.column_names, table.column_names)]
new_transform_dropdowns += [dict(choices=[None], value=None, container=False, interactive=True, allow_custom_value=True, visible=False) for _ in range(MAX_NUM_COLUMNS - len(new_transform_dropdowns))]
pattern = ([loading_code["arguments"]["splits"][split] for loading_code in loading_codes if loading_code["config_name"] == subset] or [None])[0]
return {
dataframe: prettify_df(table.to_pandas()),
**dict(zip(transform_dropdowns, [gr.Dropdown(**new_transform_dropdown) for new_transform_dropdown in new_transform_dropdowns])),
code_markdown: (
"```sql\n"
+ f"SELECT {', '.join(new_transform_dropdown['value'] for new_transform_dropdown in new_transform_dropdowns if new_transform_dropdown['value'])} "
+ f"FROM 'hf://datasets/{dataset}/{pattern}' LIMIT {NUM_ROWS};"
+ "\n```"
) if pattern else "",
}
for column_index, transform_dropdown in enumerate(transform_dropdowns):
transform_dropdown.select(partial(set_dataframe, show_warning=False), inputs=[dataset_dropdown, subset_dropdown, split_dropdown, loading_codes_json, input_table_state, dataframe] + transform_dropdowns, outputs=[dataframe, code_markdown] + transform_dropdowns)
run_button.click(set_dataframe, inputs=[dataset_dropdown, subset_dropdown, split_dropdown, loading_codes_json, input_table_state, dataframe] + transform_dropdowns, outputs=[dataframe, code_markdown] + transform_dropdowns)
@demo.load(outputs=[dataset_dropdown, loading_codes_json, subset_dropdown, split_dropdown, input_table_state, dataframe, code_markdown] + transform_dropdowns)
def _fetch_datasets(request: gr.Request, oauth_token: gr.OAuthToken | None):
api = HfApi(token=oauth_token.token if oauth_token else None)
datasets = list(api.list_datasets(limit=NUM_TRENDING_DATASETS, sort="trendingScore", direction=-1, filter=["format:parquet"]))
if oauth_token and (user := api.whoami().get("name")):
datasets += list(api.list_datasets(limit=NUM_USER_DATASETS, sort="trendingScore", direction=-1, filter=["format:parquet"], author=user))
dataset = request.query_params.get("dataset") or datasets[0].id
subsets, loading_codes = show_subset_dropdown(dataset)
splits = show_split_dropdown(subsets["value"], loading_codes)
input_table, input_dataframe, *new_transform_dropdowns = show_input_dataframe(dataset, subsets["value"], splits["value"], loading_codes)
pattern = ([loading_code["arguments"]["splits"][splits["value"]] for loading_code in loading_codes if loading_code["config_name"] == subsets["value"]] or [None])[0]
return {
dataset_dropdown: gr.Dropdown(choices=[dataset.id for dataset in datasets], value=dataset),
loading_codes_json: loading_codes,
subset_dropdown: gr.Dropdown(**subsets),
split_dropdown: gr.Dropdown(**splits),
input_table_state: input_table,
dataframe: gr.DataFrame(**input_dataframe),
**dict(zip(transform_dropdowns, [gr.Dropdown(**new_transform_dropdown) for new_transform_dropdown in new_transform_dropdowns])),
code_markdown: (
"```sql\n"
+ f"SELECT {', '.join(new_transform_dropdown['value'] for new_transform_dropdown in new_transform_dropdowns if new_transform_dropdown['value'])} "
+ f"FROM 'hf://datasets/{dataset}/{pattern}' LIMIT {NUM_ROWS};"
+ "\n```"
) if pattern else "",
}
@dataset_dropdown.select(inputs=dataset_dropdown, outputs=[loading_codes_json, subset_dropdown, split_dropdown, input_table_state, dataframe, code_markdown] + transform_dropdowns)
def _show_subset_dropdown(dataset: str):
subsets, loading_codes = show_subset_dropdown(dataset)
splits = show_split_dropdown(subsets["value"], loading_codes)
input_table, input_dataframe, *new_transform_dropdowns = show_input_dataframe(dataset, subsets["value"], splits["value"], loading_codes)
pattern = ([loading_code["arguments"]["splits"][splits["value"]] for loading_code in loading_codes if loading_code["config_name"] == subsets["value"]] or [None])[0]
return {
loading_codes_json: loading_codes,
subset_dropdown: gr.Dropdown(**subsets),
split_dropdown: gr.Dropdown(**splits),
input_table_state: input_table,
dataframe: gr.DataFrame(**input_dataframe),
**dict(zip(transform_dropdowns, [gr.Dropdown(**new_transform_dropdown) for new_transform_dropdown in new_transform_dropdowns])),
code_markdown: (
"```sql\n"
+ f"SELECT {', '.join(new_transform_dropdown['value'] for new_transform_dropdown in new_transform_dropdowns if new_transform_dropdown['value'])} "
+ f"FROM 'hf://datasets/{dataset}/{pattern}' LIMIT {NUM_ROWS};"
+ "\n```"
) if pattern else "",
}
@subset_dropdown.select(inputs=[dataset_dropdown, subset_dropdown, loading_codes_json], outputs=[split_dropdown, input_table_state, dataframe, code_markdown] + transform_dropdowns)
def _show_split_dropdown(dataset: str, subset: str, loading_codes: list[dict]):
splits = show_split_dropdown(subset, loading_codes)
input_table, input_dataframe, *new_transform_dropdowns = show_input_dataframe(dataset, subset, splits["value"], loading_codes)
pattern = ([loading_code["arguments"]["splits"][splits["value"]] for loading_code in loading_codes if loading_code["config_name"] == subset] or [None])[0]
return {
split_dropdown: gr.Dropdown(**splits),
input_table_state: input_table,
dataframe: gr.DataFrame(**input_dataframe),
**dict(zip(transform_dropdowns, [gr.Dropdown(**new_transform_dropdown) for new_transform_dropdown in new_transform_dropdowns])),
code_markdown: (
"```sql\n"
+ f"SELECT {', '.join(new_transform_dropdown['value'] for new_transform_dropdown in new_transform_dropdowns if new_transform_dropdown['value'])} "
+ f"FROM 'hf://datasets/{dataset}/{pattern}' LIMIT {NUM_ROWS};"
+ "\n```"
) if pattern else "",
}
@split_dropdown.select(inputs=[dataset_dropdown, subset_dropdown, split_dropdown, loading_codes_json], outputs=[input_table_state, dataframe, code_markdown] + transform_dropdowns)
def _show_input_dataframe(dataset: str, subset: str, split: str, loading_codes: list[dict]) -> pd.DataFrame:
input_table, input_dataframe, *new_transform_dropdowns = show_input_dataframe(dataset, subset, split, loading_codes)
pattern = ([loading_code["arguments"]["splits"][split] for loading_code in loading_codes if loading_code["config_name"] == subset] or [None])[0]
return {
input_table_state: input_table,
dataframe: gr.DataFrame(**input_dataframe),
**dict(zip(transform_dropdowns, [gr.Dropdown(**new_transform_dropdown) for new_transform_dropdown in new_transform_dropdowns])),
code_markdown: (
"```sql\n"
+ f"SELECT {', '.join(new_transform_dropdown['value'] for new_transform_dropdown in new_transform_dropdowns if new_transform_dropdown['value'])} "
+ f"FROM 'hf://datasets/{dataset}/{pattern}' LIMIT {NUM_ROWS};"
+ "\n```"
) if pattern else "",
}
if __name__ == "__main__":
demo.launch()
|