GenFBDD / datasets /moad.py
libokj's picture
Minify
c17cba8
raw
history blame
29.3 kB
import os
import pickle
from multiprocessing import Pool
import random
import copy
from torch_geometric.data import Batch
import numpy as np
import torch
from prody import confProDy
from rdkit import Chem
from rdkit.Chem import RemoveHs
from torch_geometric.data import Dataset, HeteroData
from torch_geometric.utils import subgraph
from tqdm import tqdm
confProDy(verbosity='none')
from datasets.process_mols import get_lig_graph_with_matching, moad_extract_receptor_structure
from utils.utils import read_strings_from_txt
class MOAD(Dataset):
def __init__(self, root, transform=None, cache_path='data/cache', split='train', limit_complexes=0, chain_cutoff=None,
receptor_radius=30, num_workers=1, c_alpha_max_neighbors=None, popsize=15, maxiter=15,
matching=True, keep_original=False, max_lig_size=None, remove_hs=False, num_conformers=1, all_atoms=False,
atom_radius=5, atom_max_neighbors=None, esm_embeddings_path=None, esm_embeddings_sequences_path=None, require_ligand=False,
include_miscellaneous_atoms=False, keep_local_structures=False,
min_ligand_size=0, knn_only_graph=False, matching_tries=1, multiplicity=1,
max_receptor_size=None, remove_promiscuous_targets=None, unroll_clusters=False, remove_pdbbind=False,
enforce_timesplit=False, no_randomness=False, single_cluster_name=None, total_dataset_size=None, skip_matching=False):
super(MOAD, self).__init__(root, transform)
self.moad_dir = root
self.include_miscellaneous_atoms = include_miscellaneous_atoms
self.max_lig_size = max_lig_size
self.split = split
self.limit_complexes = limit_complexes
self.receptor_radius = receptor_radius
self.num_workers = num_workers
self.c_alpha_max_neighbors = c_alpha_max_neighbors
self.remove_hs = remove_hs
self.require_ligand = require_ligand
self.esm_embeddings_path = esm_embeddings_path
self.esm_embeddings_sequences_path = esm_embeddings_sequences_path
self.keep_local_structures = keep_local_structures
self.knn_only_graph = knn_only_graph
self.matching_tries = matching_tries
self.all_atoms = all_atoms
self.multiplicity = multiplicity
self.chain_cutoff = chain_cutoff
self.no_randomness = no_randomness
self.total_dataset_size = total_dataset_size
self.skip_matching = skip_matching
self.prot_cache_path = os.path.join(cache_path, f'MOAD12_limit{self.limit_complexes}_INDEX{self.split}'
f'_recRad{self.receptor_radius}_recMax{self.c_alpha_max_neighbors}'
+ (''if not all_atoms else f'_atomRad{atom_radius}_atomMax{atom_max_neighbors}')
+ ('' if self.esm_embeddings_path is None else f'_esmEmbeddings')
+ ('' if not self.include_miscellaneous_atoms else '_miscAtoms')
+ ('' if not self.knn_only_graph else '_knnOnly'))
self.lig_cache_path = os.path.join(cache_path, f'MOAD12_limit{self.limit_complexes}_INDEX{self.split}'
f'_maxLigSize{self.max_lig_size}_H{int(not self.remove_hs)}'
+ ('' if not matching else f'_matching')
+ ('' if not skip_matching else f'skip')
+ (''if not matching or num_conformers == 1 else f'_confs{num_conformers}')
+ ('' if not keep_local_structures else f'_keptLocalStruct')
+ ('' if self.matching_tries == 1 else f'_tries{matching_tries}'))
self.popsize, self.maxiter = popsize, maxiter
self.matching, self.keep_original = matching, keep_original
self.num_conformers = num_conformers
self.single_cluster_name = single_cluster_name
if split == 'train':
split = 'PDBBind'
with open("./data/splits/MOAD_generalisation_splits.pkl", "rb") as f:
self.split_clusters = pickle.load(f)[split]
clustes_path = os.path.join(self.moad_dir, "new_cluster_to_ligands.pkl")
with open(clustes_path, "rb") as f:
self.cluster_to_ligands = pickle.load(f)
#self.cluster_to_ligands = {k: [s.split('.')[0] for s in v] for k, v in self.cluster_to_ligands.items()}
self.atom_radius, self.atom_max_neighbors = atom_radius, atom_max_neighbors
if not self.check_all_receptors():
os.makedirs(self.prot_cache_path, exist_ok=True)
self.preprocessing_receptors()
self.atom_radius, self.atom_max_neighbors = atom_radius, atom_max_neighbors
if not os.path.exists(os.path.join(self.lig_cache_path, "ligands.pkl")):
os.makedirs(self.lig_cache_path, exist_ok=True)
self.preprocessing_ligands()
print('loading ligands from memory: ', os.path.join(self.lig_cache_path, "ligands.pkl"))
with open(os.path.join(self.lig_cache_path, "ligands.pkl"), 'rb') as f:
self.ligands = pickle.load(f)
if require_ligand:
with open(os.path.join(self.lig_cache_path, "rdkit_ligands.pkl"), 'rb') as f:
self.rdkit_ligands = pickle.load(f)
self.rdkit_ligands = {lig.name:mol for mol, lig in zip(self.rdkit_ligands, self.ligands)}
len_before = len(self.ligands)
if not self.single_cluster_name is None:
self.ligands = [lig for lig in self.ligands if lig.name in self.cluster_to_ligands[self.single_cluster_name]]
print('Kept', len(self.ligands), f'ligands in {self.single_cluster_name} out of', len_before)
len_before = len(self.ligands)
self.ligands = {lig.name: lig for lig in self.ligands if min_ligand_size == 0 or lig['ligand'].x.shape[0] >= min_ligand_size}
print('removed', len_before - len(self.ligands), 'ligands below minimum size out of', len_before)
receptors_names = set([lig.name[:6] for lig in self.ligands.values()])
self.collect_receptors(receptors_names, max_receptor_size, remove_promiscuous_targets)
# filter ligands for which the receptor failed
tot_before = len(self.ligands)
self.ligands = {k:v for k, v in self.ligands.items() if k[:6] in self.receptors}
print('removed', tot_before - len(self.ligands), 'ligands with no receptor out of', tot_before)
if remove_pdbbind:
complexes_pdbbind = read_strings_from_txt('data/splits/timesplit_no_lig_overlap_train') + read_strings_from_txt('data/splits/timesplit_no_lig_overlap_val')
with open('data/BindingMOAD_2020_ab_processed_biounit/ecod_t_group_binding_site_assignment_dict_major_domain.pkl', 'rb') as f:
pdbbind_to_cluster = pickle.load(f)
clusters_pdbbind = set([pdbbind_to_cluster[c] for c in complexes_pdbbind])
self.split_clusters = [c for c in self.split_clusters if c not in clusters_pdbbind]
self.cluster_to_ligands = {k: v for k, v in self.cluster_to_ligands.items() if k not in clusters_pdbbind}
ligand_accepted = []
for c, ligands in self.cluster_to_ligands.items():
ligand_accepted += ligands
ligand_accepted = set(ligand_accepted)
tot_before = len(self.ligands)
self.ligands = {k: v for k, v in self.ligands.items() if k in ligand_accepted}
print('removed', tot_before - len(self.ligands), 'ligands in overlap with PDBBind out of', tot_before)
if enforce_timesplit:
with open("data/splits/pdbids_2019", "r") as f:
lines = f.readlines()
pdbids_from2019 = []
for i in range(6, len(lines), 4):
pdbids_from2019.append(lines[i][18:22])
pdbids_from2019 = set(pdbids_from2019)
len_before = len(self.ligands)
self.ligands = {k: v for k, v in self.ligands.items() if k[:4].upper() not in pdbids_from2019}
print('removed', len_before - len(self.ligands), 'ligands from 2019 out of', len_before)
if unroll_clusters:
rec_keys = set([k[:6] for k in self.ligands.keys()])
self.cluster_to_ligands = {k:[k2 for k2 in self.ligands.keys() if k2[:6] == k] for k in rec_keys}
self.split_clusters = list(rec_keys)
else:
for c in self.cluster_to_ligands.keys():
self.cluster_to_ligands[c] = [v for v in self.cluster_to_ligands[c] if v in self.ligands]
self.split_clusters = [c for c in self.split_clusters if len(self.cluster_to_ligands[c])>0]
print_statistics(self)
list_names = [name for cluster in self.split_clusters for name in self.cluster_to_ligands[cluster]]
with open(os.path.join(self.prot_cache_path, f'moad_{self.split}_names.txt'), 'w') as f:
f.write('\n'.join(list_names))
def len(self):
return len(self.split_clusters) * self.multiplicity if self.total_dataset_size is None else self.total_dataset_size
def get_by_name(self, ligand_name, cluster):
ligand_graph = copy.deepcopy(self.ligands[ligand_name])
complex_graph = copy.deepcopy(self.receptors[ligand_name[:6]])
if False and self.keep_original and hasattr(ligand_graph['ligand'], 'orig_pos'):
lig_path = os.path.join(self.moad_dir, 'pdb_superligand', ligand_name + '.pdb')
lig = Chem.MolFromPDBFile(lig_path)
formula = np.asarray([atom.GetSymbol() for atom in lig.GetAtoms()])
# check for same receptor/ligand pair with a different binding position
for ligand_comp in self.cluster_to_ligands[cluster]:
if ligand_comp == ligand_name or ligand_comp[:6] != ligand_name[:6]:
continue
lig_path_comp = os.path.join(self.moad_dir, 'pdb_superligand', ligand_comp + '.pdb')
if not os.path.exists(lig_path_comp):
continue
lig_comp = Chem.MolFromPDBFile(lig_path_comp)
formula_comp = np.asarray([atom.GetSymbol() for atom in lig_comp.GetAtoms()])
if formula.shape == formula_comp.shape and np.all(formula == formula_comp) and hasattr(
self.ligands[ligand_comp], 'orig_pos'):
print(f'Found complex {ligand_comp} to have the same complex/ligand pair, adding it into orig_pos')
# add the orig_pos of the binding position
if not isinstance(ligand_graph['ligand'].orig_pos, list):
ligand_graph['ligand'].orig_pos = [ligand_graph['ligand'].orig_pos]
ligand_graph['ligand'].orig_pos.append(self.ligands[ligand_comp].orig_pos)
for type in ligand_graph.node_types + ligand_graph.edge_types:
for key, value in ligand_graph[type].items():
complex_graph[type][key] = value
complex_graph.name = ligand_graph.name
if isinstance(complex_graph['ligand'].pos, list):
for i in range(len(complex_graph['ligand'].pos)):
complex_graph['ligand'].pos[i] -= complex_graph.original_center
else:
complex_graph['ligand'].pos -= complex_graph.original_center
if self.require_ligand:
complex_graph.mol = copy.deepcopy(self.rdkit_ligands[ligand_name])
if self.chain_cutoff:
distances = torch.norm(
(torch.from_numpy(complex_graph['ligand'].orig_pos[0]) - complex_graph.original_center).unsqueeze(1) - complex_graph['receptor'].pos.unsqueeze(0), dim=2)
distances = distances.min(dim=0)[0]
if torch.min(distances) >= self.chain_cutoff:
print('minimum distance', torch.min(distances), 'too large', ligand_name,
'skipping and returning random. Number of chains',
torch.max(complex_graph['receptor'].chain_ids) + 1)
return self.get(random.randint(0, self.len()))
within_cutoff = distances < self.chain_cutoff
chains_within_cutoff = torch.zeros(torch.max(complex_graph['receptor'].chain_ids) + 1)
chains_within_cutoff.index_add_(0, complex_graph['receptor'].chain_ids, within_cutoff.float())
chains_within_cutoff_bool = chains_within_cutoff > 0
residues_to_keep = chains_within_cutoff_bool[complex_graph['receptor'].chain_ids]
if self.all_atoms:
atom_to_res_mapping = complex_graph['atom', 'atom_rec_contact', 'receptor'].edge_index[1]
atoms_to_keep = residues_to_keep[atom_to_res_mapping]
rec_remapper = (torch.cumsum(residues_to_keep.long(), dim=0) - 1)
atom_to_res_new_mapping = rec_remapper[atom_to_res_mapping][atoms_to_keep]
atom_res_edge_index = torch.stack([torch.arange(len(atom_to_res_new_mapping)), atom_to_res_new_mapping])
complex_graph['atom'].x = complex_graph['atom'].x[atoms_to_keep]
complex_graph['atom'].pos = complex_graph['atom'].pos[atoms_to_keep]
complex_graph['atom', 'atom_contact', 'atom'].edge_index = \
subgraph(atoms_to_keep, complex_graph['atom', 'atom_contact', 'atom'].edge_index,
relabel_nodes=True)[0]
complex_graph['atom', 'atom_rec_contact', 'receptor'].edge_index = atom_res_edge_index
complex_graph['receptor'].pos = complex_graph['receptor'].pos[residues_to_keep]
complex_graph['receptor'].x = complex_graph['receptor'].x[residues_to_keep]
complex_graph['receptor'].side_chain_vecs = complex_graph['receptor'].side_chain_vecs[residues_to_keep]
complex_graph['receptor', 'rec_contact', 'receptor'].edge_index = \
subgraph(residues_to_keep, complex_graph['receptor', 'rec_contact', 'receptor'].edge_index,
relabel_nodes=True)[0]
extra_center = torch.mean(complex_graph['receptor'].pos, dim=0, keepdim=True)
complex_graph['receptor'].pos -= extra_center
if isinstance(complex_graph['ligand'].pos, list):
for i in range(len(complex_graph['ligand'].pos)):
complex_graph['ligand'].pos[i] -= extra_center
else:
complex_graph['ligand'].pos -= extra_center
complex_graph.original_center += extra_center
complex_graph['receptor'].pop('chain_ids')
for a in ['random_coords', 'coords', 'seq', 'sequence', 'mask', 'rmsd_matching', 'cluster', 'orig_seq',
'to_keep', 'chain_ids']:
if hasattr(complex_graph, a):
delattr(complex_graph, a)
if hasattr(complex_graph['receptor'], a):
delattr(complex_graph['receptor'], a)
return complex_graph
def get(self, idx):
if self.total_dataset_size is not None:
idx = random.randint(0, len(self.split_clusters) - 1)
idx = idx % len(self.split_clusters)
cluster = self.split_clusters[idx]
if self.no_randomness:
ligand_name = sorted(self.cluster_to_ligands[cluster])[0]
else:
ligand_name = random.choice(self.cluster_to_ligands[cluster])
complex_graph = self.get_by_name(ligand_name, cluster)
if self.total_dataset_size is not None:
complex_graph = Batch.from_data_list([complex_graph])
return complex_graph
def get_all_complexes(self):
complexes = {}
for cluster in self.split_clusters:
for ligand_name in self.cluster_to_ligands[cluster]:
complexes[ligand_name] = self.get_by_name(ligand_name, cluster)
return complexes
def preprocessing_receptors(self):
print(f'Processing receptors from [{self.split}] and saving it to [{self.prot_cache_path}]')
complex_names_all = sorted([l for c in self.split_clusters for l in self.cluster_to_ligands[c]])
if self.limit_complexes is not None and self.limit_complexes != 0:
complex_names_all = complex_names_all[:self.limit_complexes]
receptor_names_all = [l[:6] for l in complex_names_all]
receptor_names_all = sorted(list(dict.fromkeys(receptor_names_all)))
print(f'Loading {len(receptor_names_all)} receptors.')
if self.esm_embeddings_path is not None:
id_to_embeddings = torch.load(self.esm_embeddings_path)
sequences_list = read_strings_from_txt(self.esm_embeddings_sequences_path)
sequences_to_embeddings = {}
for i, seq in enumerate(sequences_list):
sequences_to_embeddings[seq] = id_to_embeddings[str(i)]
else:
sequences_to_embeddings = None
# running preprocessing in parallel on multiple workers and saving the progress every 1000 complexes
list_indices = list(range(len(receptor_names_all)//1000+1))
random.shuffle(list_indices)
for i in list_indices:
if os.path.exists(os.path.join(self.prot_cache_path, f"receptors{i}.pkl")):
continue
receptor_names = receptor_names_all[1000*i:1000*(i+1)]
receptor_graphs = []
if self.num_workers > 1:
p = Pool(self.num_workers, maxtasksperchild=1)
p.__enter__()
with tqdm(total=len(receptor_names), desc=f'loading receptors {i}/{len(receptor_names_all)//1000+1}') as pbar:
map_fn = p.imap_unordered if self.num_workers > 1 else map
for t in map_fn(self.get_receptor, zip(receptor_names, [sequences_to_embeddings]*len(receptor_names))):
if t is not None:
print(len(receptor_graphs))
receptor_graphs.append(t)
pbar.update()
if self.num_workers > 1: p.__exit__(None, None, None)
print('Number of receptors: ', len(receptor_graphs))
with open(os.path.join(self.prot_cache_path, f"receptors{i}.pkl"), 'wb') as f:
pickle.dump((receptor_graphs), f)
return receptor_names_all
def check_all_receptors(self):
complex_names_all = sorted([l for c in self.split_clusters for l in self.cluster_to_ligands[c]])
if self.limit_complexes is not None and self.limit_complexes != 0:
complex_names_all = complex_names_all[:self.limit_complexes]
receptor_names_all = [l[:6] for l in complex_names_all]
receptor_names_all = list(dict.fromkeys(receptor_names_all))
for i in range(len(receptor_names_all)//1000+1):
if not os.path.exists(os.path.join(self.prot_cache_path, f"receptors{i}.pkl")):
return False
return True
def collect_receptors(self, receptors_to_keep=None, max_receptor_size=None, remove_promiscuous_targets=None):
complex_names_all = sorted([l for c in self.split_clusters for l in self.cluster_to_ligands[c]])
if self.limit_complexes is not None and self.limit_complexes != 0:
complex_names_all = complex_names_all[:self.limit_complexes]
receptor_names_all = [l[:6] for l in complex_names_all]
receptor_names_all = sorted(list(dict.fromkeys(receptor_names_all)))
receptor_graphs_all = []
total_recovered = 0
print(f'Loading {len(receptor_names_all)} receptors to keep {len(receptors_to_keep)}.')
for i in range(len(receptor_names_all)//1000+1):
print(f'prot path: {os.path.join(self.prot_cache_path, f"receptors{i}.pkl")}')
with open(os.path.join(self.prot_cache_path, f"receptors{i}.pkl"), 'rb') as f:
l = pickle.load(f)
total_recovered += len(l)
if receptors_to_keep is not None:
l = [t for t in l if t['receptor_name'] in receptors_to_keep]
receptor_graphs_all.extend(l)
cur_len = len(receptor_graphs_all)
print(f"Kept {len(receptor_graphs_all)} receptors out of {len(receptor_names_all)} total and recovered {total_recovered}")
if max_receptor_size is not None:
receptor_graphs_all = [rec for rec in receptor_graphs_all if rec["receptor"].pos.shape[0] <= max_receptor_size]
print(f"Kept {len(receptor_graphs_all)} receptors out of {cur_len} after filtering by size")
cur_len = len(receptor_graphs_all)
if remove_promiscuous_targets is not None:
promiscuous_targets = set()
for name in complex_names_all:
l = name.split('_')
if int(l[3]) > remove_promiscuous_targets:
promiscuous_targets.add(name[:6])
receptor_graphs_all = [rec for rec in receptor_graphs_all if rec["receptor_name"] not in promiscuous_targets]
print(f"Kept {len(receptor_graphs_all)} receptors out of {cur_len} after removing promiscuous targets")
self.receptors = {}
for r in receptor_graphs_all:
self.receptors[r['receptor_name']] = r
return
def get_receptor(self, par):
name, sequences_to_embeddings = par
rec_path = os.path.join(self.moad_dir, 'pdb_protein', name + '_protein.pdb')
if not os.path.exists(rec_path):
print("Receptor not found", name, rec_path)
return None
complex_graph = HeteroData()
complex_graph['receptor_name'] = name
try:
moad_extract_receptor_structure(path=rec_path, complex_graph=complex_graph, neighbor_cutoff=self.receptor_radius,
max_neighbors=self.c_alpha_max_neighbors, sequences_to_embeddings=sequences_to_embeddings,
knn_only_graph=self.knn_only_graph, all_atoms=self.all_atoms, atom_cutoff=self.atom_radius,
atom_max_neighbors=self.atom_max_neighbors)
except Exception as e:
print(f'Skipping {name} because of the error:')
print(e)
return None
protein_center = torch.mean(complex_graph['receptor'].pos, dim=0, keepdim=True)
complex_graph['receptor'].pos -= protein_center
if self.all_atoms:
complex_graph['atom'].pos -= protein_center
complex_graph.original_center = protein_center
return complex_graph
def preprocessing_ligands(self):
print(f'Processing complexes from [{self.split}] and saving it to [{self.lig_cache_path}]')
complex_names_all = sorted([l for c in self.split_clusters for l in self.cluster_to_ligands[c]])
if self.limit_complexes is not None and self.limit_complexes != 0:
complex_names_all = complex_names_all[:self.limit_complexes]
print(f'Loading {len(complex_names_all)} ligands.')
# running preprocessing in parallel on multiple workers and saving the progress every 1000 complexes
list_indices = list(range(len(complex_names_all)//1000+1))
random.shuffle(list_indices)
for i in list_indices:
if os.path.exists(os.path.join(self.lig_cache_path, f"ligands{i}.pkl")):
continue
complex_names = complex_names_all[1000*i:1000*(i+1)]
ligand_graphs, rdkit_ligands = [], []
if self.num_workers > 1:
p = Pool(self.num_workers, maxtasksperchild=1)
p.__enter__()
with tqdm(total=len(complex_names), desc=f'loading complexes {i}/{len(complex_names_all)//1000+1}') as pbar:
map_fn = p.imap_unordered if self.num_workers > 1 else map
for t in map_fn(self.get_ligand, complex_names):
if t is not None:
ligand_graphs.append(t[0])
rdkit_ligands.append(t[1])
pbar.update()
if self.num_workers > 1: p.__exit__(None, None, None)
with open(os.path.join(self.lig_cache_path, f"ligands{i}.pkl"), 'wb') as f:
pickle.dump((ligand_graphs), f)
with open(os.path.join(self.lig_cache_path, f"rdkit_ligands{i}.pkl"), 'wb') as f:
pickle.dump((rdkit_ligands), f)
ligand_graphs_all = []
for i in range(len(complex_names_all)//1000+1):
with open(os.path.join(self.lig_cache_path, f"ligands{i}.pkl"), 'rb') as f:
l = pickle.load(f)
ligand_graphs_all.extend(l)
with open(os.path.join(self.lig_cache_path, f"ligands.pkl"), 'wb') as f:
pickle.dump((ligand_graphs_all), f)
rdkit_ligands_all = []
for i in range(len(complex_names_all) // 1000 + 1):
with open(os.path.join(self.lig_cache_path, f"rdkit_ligands{i}.pkl"), 'rb') as f:
l = pickle.load(f)
rdkit_ligands_all.extend(l)
with open(os.path.join(self.lig_cache_path, f"rdkit_ligands.pkl"), 'wb') as f:
pickle.dump((rdkit_ligands_all), f)
def get_ligand(self, name):
if self.split == 'train':
lig_path = os.path.join(self.moad_dir, 'pdb_superligand', name + '.pdb')
else:
lig_path = os.path.join(self.moad_dir, 'pdb_ligand', name + '.pdb')
if not os.path.exists(lig_path):
print("Ligand not found", name, lig_path)
return None
# read pickle
lig = Chem.MolFromPDBFile(lig_path)
if self.max_lig_size is not None and lig.GetNumHeavyAtoms() > self.max_lig_size:
print(f'Ligand with {lig.GetNumHeavyAtoms()} heavy atoms is larger than max_lig_size {self.max_lig_size}. Not including {name} in preprocessed data.')
return None
try:
if self.matching:
smile = Chem.MolToSmiles(lig)
if '.' in smile:
print(f'Ligand {name} has multiple fragments and we are doing matching. Not including {name} in preprocessed data.')
return None
complex_graph = HeteroData()
complex_graph['name'] = name
Chem.SanitizeMol(lig)
get_lig_graph_with_matching(lig, complex_graph, self.popsize, self.maxiter, self.matching, self.keep_original,
self.num_conformers, remove_hs=self.remove_hs, tries=self.matching_tries, skip_matching=self.skip_matching)
except Exception as e:
print(f'Skipping {name} because of the error:')
print(e)
return None
if self.split != 'train':
other_positions = [complex_graph['ligand'].orig_pos]
nsplit = name.split('_')
for i in range(100):
new_file = os.path.join(self.moad_dir, 'pdb_ligand', f'{nsplit[0]}_{nsplit[1]}_{nsplit[2]}_{i}.pdb')
if os.path.exists(new_file):
if i != int(nsplit[3]):
lig = Chem.MolFromPDBFile(new_file)
lig = RemoveHs(lig, sanitize=True)
other_positions.append(lig.GetConformer().GetPositions())
else:
break
complex_graph['ligand'].orig_pos = np.asarray(other_positions)
return complex_graph, lig
def print_statistics(dataset):
statistics = ([], [], [], [], [], [])
receptor_sizes = []
for i in range(len(dataset)):
complex_graph = dataset[i]
lig_pos = complex_graph['ligand'].pos if torch.is_tensor(complex_graph['ligand'].pos) else complex_graph['ligand'].pos[0]
receptor_sizes.append(complex_graph['receptor'].pos.shape[0])
radius_protein = torch.max(torch.linalg.vector_norm(complex_graph['receptor'].pos, dim=1))
molecule_center = torch.mean(lig_pos, dim=0)
radius_molecule = torch.max(
torch.linalg.vector_norm(lig_pos - molecule_center.unsqueeze(0), dim=1))
distance_center = torch.linalg.vector_norm(molecule_center)
statistics[0].append(radius_protein)
statistics[1].append(radius_molecule)
statistics[2].append(distance_center)
if "rmsd_matching" in complex_graph:
statistics[3].append(complex_graph.rmsd_matching)
else:
statistics[3].append(0)
statistics[4].append(int(complex_graph.random_coords) if "random_coords" in complex_graph else -1)
if "random_coords" in complex_graph and complex_graph.random_coords and "rmsd_matching" in complex_graph:
statistics[5].append(complex_graph.rmsd_matching)
if len(statistics[5]) == 0:
statistics[5].append(-1)
name = ['radius protein', 'radius molecule', 'distance protein-mol', 'rmsd matching', 'random coordinates', 'random rmsd matching']
print('Number of complexes: ', len(dataset))
for i in range(len(name)):
array = np.asarray(statistics[i])
print(f"{name[i]}: mean {np.mean(array)}, std {np.std(array)}, max {np.max(array)}")
return