GenFBDD / models /cg_model.py
libokj's picture
Initial commit GenFBDD
9439b9b
raw
history blame
37.7 kB
import math
from e3nn import o3
import torch
from e3nn.o3 import Linear
from esm.pretrained import load_model_and_alphabet
from torch import nn
from torch.nn import functional as F
from torch_cluster import radius, radius_graph
from torch_scatter import scatter, scatter_mean
import numpy as np
from models.layers import GaussianSmearing, AtomEncoder
from models.tensor_layers import TensorProductConvLayer, get_irrep_seq
from utils import so3, torus
from datasets.process_mols import lig_feature_dims, rec_residue_feature_dims, rec_atom_feature_dims
class CGModel(torch.nn.Module):
def __init__(self, t_to_sigma, device, timestep_emb_func, in_lig_edge_features=4, sigma_embed_dim=32, sh_lmax=2,
ns=16, nv=4, num_conv_layers=2, lig_max_radius=5, rec_max_radius=30, cross_max_distance=250,
center_max_distance=30, distance_embed_dim=32, cross_distance_embed_dim=32, no_torsion=False,
scale_by_sigma=True, norm_by_sigma=True, use_second_order_repr=False, batch_norm=True,
dynamic_max_cross=False, dropout=0.0, smooth_edges=False, odd_parity=False,
separate_noise_schedule=False, lm_embedding_type=None, confidence_mode=False,
confidence_dropout=0, confidence_no_batchnorm=False,
asyncronous_noise_schedule=False, affinity_prediction=False, parallel=1,
parallel_aggregators="mean max min std", num_confidence_outputs=1, atom_num_confidence_outputs=1, fixed_center_conv=False,
no_aminoacid_identities=False, include_miscellaneous_atoms=False,
differentiate_convolutions=True, tp_weights_layers=2, num_prot_emb_layers=0, reduce_pseudoscalars=False,
embed_also_ligand=False, atom_confidence=False, sidechain_pred=False, depthwise_convolution=False):
super(CGModel, self).__init__()
assert parallel == 1, "not implemented"
assert (not no_aminoacid_identities) or (lm_embedding_type is None), "no language model emb without identities"
self.t_to_sigma = t_to_sigma
self.in_lig_edge_features = in_lig_edge_features
sigma_embed_dim *= (3 if separate_noise_schedule else 1)
self.sigma_embed_dim = sigma_embed_dim
self.lig_max_radius = lig_max_radius
self.rec_max_radius = rec_max_radius
self.include_miscellaneous_atoms = include_miscellaneous_atoms
self.cross_max_distance = cross_max_distance
self.dynamic_max_cross = dynamic_max_cross
self.center_max_distance = center_max_distance
self.distance_embed_dim = distance_embed_dim
self.cross_distance_embed_dim = cross_distance_embed_dim
self.sh_irreps = o3.Irreps.spherical_harmonics(lmax=sh_lmax)
self.ns, self.nv = ns, nv
self.scale_by_sigma = scale_by_sigma
self.norm_by_sigma = norm_by_sigma
self.device = device
self.no_torsion = no_torsion
self.smooth_edges = smooth_edges
self.odd_parity = odd_parity
self.timestep_emb_func = timestep_emb_func
self.separate_noise_schedule = separate_noise_schedule
self.confidence_mode = confidence_mode
self.num_conv_layers = num_conv_layers
self.num_prot_emb_layers = num_prot_emb_layers
self.asyncronous_noise_schedule = asyncronous_noise_schedule
self.affinity_prediction = affinity_prediction
self.fixed_center_conv = fixed_center_conv
self.no_aminoacid_identities = no_aminoacid_identities
self.differentiate_convolutions = differentiate_convolutions
self.reduce_pseudoscalars = reduce_pseudoscalars
self.atom_confidence = atom_confidence
self.atom_num_confidence_outputs = atom_num_confidence_outputs
self.sidechain_pred = sidechain_pred
self.lm_embedding_type = lm_embedding_type
if lm_embedding_type is None:
lm_embedding_dim = 0
elif lm_embedding_type == "precomputed":
lm_embedding_dim=1280
else:
lm, alphabet = load_model_and_alphabet(lm_embedding_type)
self.batch_converter = alphabet.get_batch_converter()
lm.lm_head = torch.nn.Identity()
lm.contact_head = torch.nn.Identity()
lm_embedding_dim = lm.embed_dim
self.lm = lm
atom_encoder_class = AtomEncoder
self.lig_node_embedding = atom_encoder_class(emb_dim=ns, feature_dims=lig_feature_dims, sigma_embed_dim=sigma_embed_dim)
self.lig_edge_embedding = nn.Sequential(nn.Linear(in_lig_edge_features + sigma_embed_dim + distance_embed_dim, ns),nn.ReLU(),nn.Dropout(dropout),nn.Linear(ns, ns))
self.rec_node_embedding = atom_encoder_class(emb_dim=ns, feature_dims=rec_residue_feature_dims, sigma_embed_dim=0, lm_embedding_dim=lm_embedding_dim)
self.rec_edge_embedding = nn.Sequential(nn.Linear(distance_embed_dim, ns), nn.ReLU(), nn.Dropout(dropout), nn.Linear(ns, ns))
self.rec_sigma_embedding = nn.Sequential(nn.Linear(sigma_embed_dim, ns), nn.ReLU(), nn.Dropout(dropout), nn.Linear(ns, ns))
if self.include_miscellaneous_atoms:
self.misc_atom_node_embedding = atom_encoder_class(emb_dim=ns, feature_dims=rec_atom_feature_dims, sigma_embed_dim=sigma_embed_dim)
self.misc_atom_edge_embedding = nn.Sequential(nn.Linear(sigma_embed_dim + distance_embed_dim, ns), nn.ReLU(),nn.Dropout(dropout), nn.Linear(ns, ns))
self.ar_edge_embedding = nn.Sequential(nn.Linear(sigma_embed_dim + distance_embed_dim, ns), nn.ReLU(),nn.Dropout(dropout), nn.Linear(ns, ns))
self.la_edge_embedding = nn.Sequential(nn.Linear(sigma_embed_dim + cross_distance_embed_dim, ns), nn.ReLU(),nn.Dropout(dropout), nn.Linear(ns, ns))
self.cross_edge_embedding = nn.Sequential(nn.Linear(sigma_embed_dim + cross_distance_embed_dim, ns), nn.ReLU(), nn.Dropout(dropout),nn.Linear(ns, ns))
self.lig_distance_expansion = GaussianSmearing(0.0, lig_max_radius, distance_embed_dim)
self.rec_distance_expansion = GaussianSmearing(0.0, rec_max_radius, distance_embed_dim)
self.cross_distance_expansion = GaussianSmearing(0.0, cross_max_distance, cross_distance_embed_dim)
irrep_seq = get_irrep_seq(ns, nv, use_second_order_repr, reduce_pseudoscalars)
assert not self.include_miscellaneous_atoms, "currently not supported"
rec_emb_layers = []
for i in range(num_prot_emb_layers):
in_irreps = irrep_seq[min(i, len(irrep_seq) - 1)]
out_irreps = irrep_seq[min(i + 1, len(irrep_seq) - 1)]
layer = TensorProductConvLayer(
in_irreps=in_irreps,
sh_irreps=self.sh_irreps,
out_irreps=out_irreps,
n_edge_features=3 * ns,
hidden_features=3 * ns,
residual=True,
batch_norm=batch_norm,
dropout=dropout,
faster=sh_lmax == 1 and not use_second_order_repr,
tp_weights_layers=tp_weights_layers,
edge_groups=1,
depthwise=depthwise_convolution
)
rec_emb_layers.append(layer)
self.rec_emb_layers = nn.ModuleList(rec_emb_layers)
self.embed_also_ligand = embed_also_ligand
if embed_also_ligand:
lig_emb_layers = []
for i in range(num_prot_emb_layers):
in_irreps = irrep_seq[min(i, len(irrep_seq) - 1)]
out_irreps = irrep_seq[min(i + 1, len(irrep_seq) - 1)]
layer = TensorProductConvLayer(
in_irreps=in_irreps,
sh_irreps=self.sh_irreps,
out_irreps=out_irreps,
n_edge_features=3 * ns,
hidden_features=3 * ns,
residual=True,
batch_norm=batch_norm,
dropout=dropout,
faster=sh_lmax == 1 and not use_second_order_repr,
tp_weights_layers=tp_weights_layers,
edge_groups=1,
depthwise=depthwise_convolution
)
lig_emb_layers.append(layer)
self.lig_emb_layers = nn.ModuleList(lig_emb_layers)
conv_layers = []
for i in range(num_prot_emb_layers, num_prot_emb_layers + num_conv_layers):
in_irreps = irrep_seq[min(i, len(irrep_seq) - 1)]
out_irreps = irrep_seq[min(i + 1, len(irrep_seq) - 1)]
layer = TensorProductConvLayer(
in_irreps=in_irreps,
sh_irreps=self.sh_irreps,
out_irreps=out_irreps,
n_edge_features=3 * ns,
hidden_features=3 * ns,
residual=True,
batch_norm=batch_norm,
dropout=dropout,
faster=sh_lmax == 1 and not use_second_order_repr,
tp_weights_layers=tp_weights_layers,
edge_groups=1 if not differentiate_convolutions else (2 if i == num_prot_emb_layers + num_conv_layers - 1 else 4),
depthwise=depthwise_convolution
)
conv_layers.append(layer)
self.conv_layers = nn.ModuleList(conv_layers)
if sidechain_pred:
self.sidechain_predictor = Linear(
irreps_in=irrep_seq[min(num_prot_emb_layers + num_conv_layers, len(irrep_seq) - 1)],
irreps_out='4x0e + 2x1e + 4x0o + 2x1o',
internal_weights=True,
shared_weights=True,
)
if self.confidence_mode:
input_size = ns + (nv if reduce_pseudoscalars else ns) if num_conv_layers + num_prot_emb_layers >= 3 else ns
if self.atom_confidence:
self.atom_confidence_predictor = nn.Sequential(
nn.Linear(input_size, ns),
nn.BatchNorm1d(ns) if not confidence_no_batchnorm else nn.Identity(),
nn.ReLU(),
nn.Dropout(confidence_dropout),
nn.Linear(ns, ns),
nn.BatchNorm1d(ns) if not confidence_no_batchnorm else nn.Identity(),
nn.ReLU(),
nn.Dropout(confidence_dropout),
nn.Linear(ns, atom_num_confidence_outputs + ns)
)
input_size = ns
self.confidence_predictor = nn.Sequential(
nn.Linear(input_size, ns),
nn.BatchNorm1d(ns) if not confidence_no_batchnorm else nn.Identity(),
nn.ReLU(),
nn.Dropout(confidence_dropout),
nn.Linear(ns, ns),
nn.BatchNorm1d(ns) if not confidence_no_batchnorm else nn.Identity(),
nn.ReLU(),
nn.Dropout(confidence_dropout),
nn.Linear(ns, num_confidence_outputs + (1 if self.affinity_prediction else 0))
)
else:
# center of mass translation and rotation components
self.center_distance_expansion = GaussianSmearing(0.0, center_max_distance, distance_embed_dim)
self.center_edge_embedding = nn.Sequential(
nn.Linear(distance_embed_dim + sigma_embed_dim, ns),
nn.ReLU(),
nn.Dropout(dropout),
nn.Linear(ns, ns)
)
self.final_conv = TensorProductConvLayer(
in_irreps=self.conv_layers[-1].out_irreps,
sh_irreps=self.sh_irreps,
out_irreps=f'2x1o + 2x1e' if not self.odd_parity else '1x1o + 1x1e',
n_edge_features=2 * ns,
residual=False,
dropout=dropout,
batch_norm=batch_norm
)
self.tr_final_layer = nn.Sequential(nn.Linear(1 + sigma_embed_dim, ns),nn.Dropout(dropout), nn.ReLU(), nn.Linear(ns, 1))
self.rot_final_layer = nn.Sequential(nn.Linear(1 + sigma_embed_dim, ns),nn.Dropout(dropout), nn.ReLU(), nn.Linear(ns, 1))
if not no_torsion:
# torsion angles components
self.final_edge_embedding = nn.Sequential(
nn.Linear(distance_embed_dim, ns),
nn.ReLU(),
nn.Dropout(dropout),
nn.Linear(ns, ns)
)
self.final_tp_tor = o3.FullTensorProduct(self.sh_irreps, "2e")
self.tor_bond_conv = TensorProductConvLayer(
in_irreps=self.conv_layers[-1].out_irreps,
sh_irreps=self.final_tp_tor.irreps_out,
out_irreps=f'{ns}x0o + {ns}x0e' if not self.odd_parity else f'{ns}x0o',
n_edge_features=3 * ns,
residual=False,
dropout=dropout,
batch_norm=batch_norm
)
self.tor_final_layer = nn.Sequential(
nn.Linear(2 * ns if not self.odd_parity else ns, ns, bias=False),
nn.Tanh(),
nn.Dropout(dropout),
nn.Linear(ns, 1, bias=False)
)
def ligand_embedding(self, data):
# ligand embedding
lig_node_attr, lig_edge_index, lig_edge_attr, lig_edge_sh, lig_edge_weight = self.build_lig_conv_graph(data)
lig_node_attr = self.lig_node_embedding(lig_node_attr)
lig_edge_attr = self.lig_edge_embedding(lig_edge_attr)
assert self.embed_also_ligand, "otherwise reimplement padding"
for l in range(len(self.lig_emb_layers)):
edge_attr_ = torch.cat([lig_edge_attr, lig_node_attr[lig_edge_index[0], :self.ns],
lig_node_attr[lig_edge_index[1], :self.ns]], -1)
lig_node_attr = self.lig_emb_layers[l](lig_node_attr, lig_edge_index, edge_attr_, lig_edge_sh,
edge_weight=lig_edge_weight)
return lig_node_attr, lig_edge_index, lig_edge_attr, lig_edge_sh, lig_edge_weight
def embedding(self, data):
if not hasattr(data['receptor'], "rec_node_attr"):
if self.lm_embedding_type not in [None, 'precomputed']:
sequences = [s for l in data['receptor'].sequence for s in l]
if isinstance(sequences[0], list):
sequences = [s for l in sequences for s in l]
sequences = [(i, s) for i, s in enumerate(sequences)]
batch_labels, batch_strs, batch_tokens = self.batch_converter(sequences)
out = self.lm(batch_tokens.to(data['receptor'].x.device), repr_layers=[self.lm.num_layers], return_contacts=False)
rec_lm_emb = torch.cat([t[:len(sequences[i][1])] for i, t in enumerate(out['representations'][self.lm.num_layers])], dim=0)
data['receptor'].x = torch.cat([data['receptor'].x, rec_lm_emb], dim=-1)
rec_node_attr, rec_edge_attr, rec_edge_sh, rec_edge_weight = self.build_rec_conv_graph(data)
rec_node_attr = self.rec_node_embedding(rec_node_attr)
rec_edge_attr = self.rec_edge_embedding(rec_edge_attr)
for l in range(len(self.rec_emb_layers)):
edge_attr_ = torch.cat([rec_edge_attr, rec_node_attr[data['receptor', 'receptor'].edge_index[0], :self.ns], rec_node_attr[data['receptor', 'receptor'].edge_index[1], :self.ns]], -1)
rec_node_attr = self.rec_emb_layers[l](rec_node_attr, data['receptor', 'receptor'].edge_index, edge_attr_, rec_edge_sh, edge_weight=rec_edge_weight)
data['receptor'].rec_node_attr = rec_node_attr
data['receptor', 'receptor'].rec_edge_attr = rec_edge_attr
data['receptor', 'receptor'].edge_sh = rec_edge_sh
data['receptor', 'receptor'].edge_weight = rec_edge_weight
# receptor embedding
rec_sigma_emb = self.rec_sigma_embedding(self.timestep_emb_func(data.complex_t['tr']))
rec_node_attr = data['receptor'].rec_node_attr + 0
rec_node_attr[:, :self.ns] = rec_node_attr[:, :self.ns] + rec_sigma_emb[data['receptor'].batch]
rec_edge_attr = data['receptor', 'receptor'].rec_edge_attr + rec_sigma_emb[data['receptor'].batch[data['receptor', 'receptor'].edge_index[0]]]
lig_node_attr, lig_edge_index, lig_edge_attr, lig_edge_sh, lig_edge_weight = self.ligand_embedding(data)
return lig_node_attr, lig_edge_index, lig_edge_attr, lig_edge_sh, lig_edge_weight, \
rec_node_attr, data['receptor', 'receptor'].edge_index, rec_edge_attr, data['receptor', 'receptor'].edge_sh, data['receptor', 'receptor'].edge_weight
def forward(self, data):
if self.no_aminoacid_identities:
data['receptor'].x = data['receptor'].x * 0
if not self.confidence_mode:
tr_sigma, rot_sigma, tor_sigma = self.t_to_sigma(*[data.complex_t[noise_type] for noise_type in ['tr', 'rot', 'tor']])
else:
tr_sigma, rot_sigma, tor_sigma = [data.complex_t[noise_type] for noise_type in ['tr', 'rot', 'tor']]
lig_node_attr, lig_edge_index, lig_edge_attr, lig_edge_sh, lig_edge_weight, rec_node_attr, \
rec_edge_index, rec_edge_attr, rec_edge_sh, rec_edge_weight = self.embedding(data)
# build cross graph
if self.dynamic_max_cross:
cross_cutoff = (tr_sigma * 3 + 20).unsqueeze(1)
else:
cross_cutoff = self.cross_max_distance
lr_edge_index, lr_edge_attr, lr_edge_sh, rev_lr_edge_sh, lr_edge_weight = self.build_cross_conv_graph(data, cross_cutoff)
lr_edge_attr = self.cross_edge_embedding(lr_edge_attr)
node_attr = torch.cat([lig_node_attr, rec_node_attr], dim=0)
lr_edge_index[1] = lr_edge_index[1] + len(lig_node_attr)
edge_index = torch.cat([lig_edge_index, lr_edge_index, rec_edge_index + len(lig_node_attr),
torch.flip(lr_edge_index, dims=[0])], dim=1)
edge_attr = torch.cat([lig_edge_attr, lr_edge_attr, rec_edge_attr, lr_edge_attr], dim=0)
edge_sh = torch.cat([lig_edge_sh, lr_edge_sh, rec_edge_sh, rev_lr_edge_sh], dim=0)
edge_weight = torch.cat([lig_edge_weight, lr_edge_weight, rec_edge_weight, lr_edge_weight],
dim=0) if torch.is_tensor(lig_edge_weight) else torch.ones((len(edge_index[0]), 1),
device=edge_index.device)
s1, s2, s3 = len(lig_edge_index[0]), len(lig_edge_index[0]) + len(lr_edge_index[0]), len(lig_edge_index[0]) + len(lr_edge_index[0]) + len(rec_edge_index[0])
for l in range(len(self.conv_layers)):
if l < len(self.conv_layers) - 1:
edge_attr_ = torch.cat(
[edge_attr, node_attr[edge_index[0], :self.ns], node_attr[edge_index[1], :self.ns]], -1)
if self.differentiate_convolutions: edge_attr_ = [edge_attr_[:s1], edge_attr_[s1:s2], edge_attr_[s2:s3], edge_attr_[s3:]]
node_attr = self.conv_layers[l](node_attr, edge_index, edge_attr_, edge_sh, edge_weight=edge_weight)
else:
edge_attr_ = torch.cat([edge_attr[:s2], node_attr[edge_index[0, :s2], :self.ns], node_attr[edge_index[1, :s2], :self.ns]], -1)
if self.differentiate_convolutions: edge_attr_ = [edge_attr_[:s1], edge_attr_[s1:s2]]
node_attr = self.conv_layers[l](node_attr, edge_index[:, :s2], edge_attr_, edge_sh[:s2], edge_weight=edge_weight[:s2])
lig_node_attr = node_attr[:len(lig_node_attr)]
# compute confidence score
if self.confidence_mode:
scalar_lig_attr = torch.cat([lig_node_attr[:,:self.ns], lig_node_attr[:,-(self.nv if self.reduce_pseudoscalars else self.ns):] ], dim=1) \
if self.num_conv_layers + self.num_prot_emb_layers >= 3 else lig_node_attr[:,:self.ns]
if self.atom_confidence:
scalar_lig_attr = self.atom_confidence_predictor(scalar_lig_attr)
atom_confidence = scalar_lig_attr[:, :self.atom_num_confidence_outputs]
scalar_lig_attr = scalar_lig_attr[:, self.atom_num_confidence_outputs:]
else:
atom_confidence = torch.zeros((len(lig_node_attr),), device=lig_node_attr.device)
confidence = self.confidence_predictor(scatter_mean(scalar_lig_attr, data['ligand'].batch, dim=0)).squeeze(dim=-1)
return confidence, atom_confidence
# compute translational and rotational score vectors
center_edge_index, center_edge_attr, center_edge_sh = self.build_center_conv_graph(data)
center_edge_attr = self.center_edge_embedding(center_edge_attr)
if self.fixed_center_conv:
center_edge_attr = torch.cat([center_edge_attr, lig_node_attr[center_edge_index[1], :self.ns]], -1)
else:
center_edge_attr = torch.cat([center_edge_attr, lig_node_attr[center_edge_index[0], :self.ns]], -1)
global_pred = self.final_conv(lig_node_attr, center_edge_index, center_edge_attr, center_edge_sh, out_nodes=data.num_graphs)
tr_pred = global_pred[:, :3] + (global_pred[:, 6:9] if not self.odd_parity else 0)
rot_pred = global_pred[:, 3:6] + (global_pred[:, 9:] if not self.odd_parity else 0)
if self.separate_noise_schedule:
data.graph_sigma_emb = torch.cat([self.timestep_emb_func(data.complex_t[noise_type]) for noise_type in ['tr','rot','tor']], dim=1)
elif self.asyncronous_noise_schedule:
data.graph_sigma_emb = self.timestep_emb_func(data.complex_t['t'])
else: # tr rot and tor noise is all the same in this case
data.graph_sigma_emb = self.timestep_emb_func(data.complex_t['tr'])
# fix the magnitude of translational and rotational score vectors
tr_norm = torch.linalg.vector_norm(tr_pred, dim=1).unsqueeze(1)
tr_pred = tr_pred / tr_norm * self.tr_final_layer(torch.cat([tr_norm, data.graph_sigma_emb], dim=1))
rot_norm = torch.linalg.vector_norm(rot_pred, dim=1).unsqueeze(1)
rot_pred = rot_pred / rot_norm * self.rot_final_layer(torch.cat([rot_norm, data.graph_sigma_emb], dim=1))
if self.scale_by_sigma:
tr_pred = tr_pred / tr_sigma.unsqueeze(1)
rot_pred = rot_pred * so3.score_norm(rot_sigma.cpu()).unsqueeze(1).to(data['ligand'].x.device)
# predict sidechain orientation
sidechain_pred = None
if self.sidechain_pred:
rec_node_attr = node_attr[len(lig_node_attr):]
sidechain_pred = self.sidechain_predictor(rec_node_attr)
sidechain_pred = sidechain_pred[:, :10] + sidechain_pred[:, 10:] # sum even and odd components
if self.no_torsion or data['ligand'].edge_mask.sum() == 0: return tr_pred, rot_pred, torch.empty(0, device=self.device), sidechain_pred
# torsional components
tor_bonds, tor_edge_index, tor_edge_attr, tor_edge_sh, tor_edge_weight = self.build_bond_conv_graph(data)
tor_bond_vec = data['ligand'].pos[tor_bonds[1]] - data['ligand'].pos[tor_bonds[0]]
tor_bond_attr = lig_node_attr[tor_bonds[0]] + lig_node_attr[tor_bonds[1]]
tor_bonds_sh = o3.spherical_harmonics("2e", tor_bond_vec, normalize=True, normalization='component')
tor_edge_sh = self.final_tp_tor(tor_edge_sh, tor_bonds_sh[tor_edge_index[0]])
tor_edge_attr = torch.cat([tor_edge_attr, lig_node_attr[tor_edge_index[1], :self.ns],
tor_bond_attr[tor_edge_index[0], :self.ns]], -1)
tor_pred = self.tor_bond_conv(lig_node_attr, tor_edge_index, tor_edge_attr, tor_edge_sh,
out_nodes=data['ligand'].edge_mask.sum(), reduce='mean', edge_weight=tor_edge_weight)
tor_pred = self.tor_final_layer(tor_pred).squeeze(1)
edge_sigma = tor_sigma[data['ligand'].batch][data['ligand', 'ligand'].edge_index[0]][data['ligand'].edge_mask]
if self.scale_by_sigma:
tor_pred = tor_pred * torch.sqrt(torch.tensor(torus.score_norm(edge_sigma.cpu().numpy())).float()
.to(data['ligand'].x.device))
return tr_pred, rot_pred, tor_pred, sidechain_pred
def torsional_forward(self, data):
tor_sigma = self.t_to_sigma(data.complex_t['tor'])
# build ligand graph
lig_node_attr, lig_edge_index, lig_edge_attr, lig_edge_sh, lig_edge_weight = self.ligand_embedding(data)
if self.separate_noise_schedule:
data.graph_sigma_emb = torch.cat([self.timestep_emb_func(data.complex_t[noise_type]) for noise_type in ['tr','rot','tor']], dim=1)
elif self.asyncronous_noise_schedule:
data.graph_sigma_emb = self.timestep_emb_func(data.complex_t['t'])
else: # tr rot and tor noise is all the same in this case
data.graph_sigma_emb = self.timestep_emb_func(data.complex_t['tr'])
# torsional components
tor_bonds, tor_edge_index, tor_edge_attr, tor_edge_sh, tor_edge_weight = self.build_bond_conv_graph(data)
tor_bond_vec = data['ligand'].pos[tor_bonds[1]] - data['ligand'].pos[tor_bonds[0]]
tor_bond_attr = lig_node_attr[tor_bonds[0]] + lig_node_attr[tor_bonds[1]]
tor_bonds_sh = o3.spherical_harmonics("2e", tor_bond_vec, normalize=True, normalization='component')
tor_edge_sh = self.final_tp_tor(tor_edge_sh, tor_bonds_sh[tor_edge_index[0]])
tor_edge_attr = torch.cat([tor_edge_attr, lig_node_attr[tor_edge_index[1], :self.ns],
tor_bond_attr[tor_edge_index[0], :self.ns]], -1)
tor_pred = self.tor_bond_conv(lig_node_attr, tor_edge_index, tor_edge_attr, tor_edge_sh,
out_nodes=data['ligand'].edge_mask.sum(), reduce='mean', edge_weight=tor_edge_weight)
tor_pred = self.tor_final_layer(tor_pred).squeeze(1)
edge_sigma = tor_sigma[data['ligand'].batch][data['ligand', 'ligand'].edge_index[0]][data['ligand'].edge_mask]
if self.scale_by_sigma:
tor_pred = tor_pred * torch.sqrt(torch.tensor(torus.score_norm(edge_sigma.cpu().numpy())).float()
.to(data['ligand'].x.device))
return 0, 0, tor_pred, 0
def get_edge_weight(self, edge_vec, max_norm):
# computes weights for edges that are decreasing with the distance
# it has an effect only if smooth edges is true
if self.smooth_edges:
normalised_norm = torch.clip(edge_vec.norm(dim=-1) * np.pi / max_norm, max=np.pi)
return 0.5 * (torch.cos(normalised_norm) + 1.0).unsqueeze(-1)
return 1.0
def build_lig_conv_graph(self, data):
# builds the ligand graph edges and initial node and edge features
if self.separate_noise_schedule:
data['ligand'].node_sigma_emb = torch.cat([self.timestep_emb_func(data['ligand'].node_t[noise_type]) for noise_type in ['tr','rot','tor']], dim=1)
elif self.asyncronous_noise_schedule:
data['ligand'].node_sigma_emb = self.timestep_emb_func(data['ligand'].node_t['t'])
else:
data['ligand'].node_sigma_emb = self.timestep_emb_func(data['ligand'].node_t['tr']) # tr rot and tor noise is all the same
# compute edges
radius_edges = radius_graph(data['ligand'].pos, self.lig_max_radius, data['ligand'].batch)
edge_index = torch.cat([data['ligand', 'ligand'].edge_index, radius_edges], 1).long()
edge_attr = torch.cat([
data['ligand', 'ligand'].edge_attr,
torch.zeros(radius_edges.shape[-1], self.in_lig_edge_features, device=data['ligand'].x.device)
], 0)
# compute initial features
edge_sigma_emb = data['ligand'].node_sigma_emb[edge_index[0].long()]
edge_attr = torch.cat([edge_attr, edge_sigma_emb], 1)
node_attr = torch.cat([data['ligand'].x, data['ligand'].node_sigma_emb], 1)
src, dst = edge_index
edge_vec = data['ligand'].pos[dst.long()] - data['ligand'].pos[src.long()]
edge_length_emb = self.lig_distance_expansion(edge_vec.norm(dim=-1))
edge_attr = torch.cat([edge_attr, edge_length_emb], 1)
edge_sh = o3.spherical_harmonics(self.sh_irreps, edge_vec, normalize=True, normalization='component')
edge_weight = self.get_edge_weight(edge_vec, self.lig_max_radius)
return node_attr, edge_index, edge_attr, edge_sh, edge_weight
def build_rec_conv_graph(self, data):
# builds the receptor initial node and edge embeddings
assert not self.separate_noise_schedule or self.asyncronous_noise_schedule, "removed support in this function"
node_attr = data['receptor'].x
# this assumes the edges were already created in preprocessing since protein's structure is fixed
edge_index = data['receptor', 'receptor'].edge_index
src, dst = edge_index
edge_vec = data['receptor'].pos[dst.long()] - data['receptor'].pos[src.long()]
edge_length_emb = self.rec_distance_expansion(edge_vec.norm(dim=-1))
edge_attr = edge_length_emb
edge_sh = o3.spherical_harmonics(self.sh_irreps, edge_vec, normalize=True, normalization='component')
edge_weight = self.get_edge_weight(edge_vec, self.rec_max_radius)
return node_attr, edge_attr, edge_sh, edge_weight
def build_misc_atom_conv_graph(self, data):
# build the graph between receptor misc_atoms
if self.separate_noise_schedule:
data['misc_atom'].node_sigma_emb = torch.cat([self.timestep_emb_func(data['misc_atom'].node_t[noise_type]) for noise_type in ['tr', 'rot', 'tor']],dim=1)
elif self.asyncronous_noise_schedule:
data['misc_atom'].node_sigma_emb = self.timestep_emb_func(data['misc_atom'].node_t['t'])
else:
data['misc_atom'].node_sigma_emb = self.timestep_emb_func(data['misc_atom'].node_t['tr']) # tr rot and tor noise is all the same
node_attr = torch.cat([data['misc_atom'].x, data['misc_atom'].node_sigma_emb], 1)
# this assumes the edges were already created in preprocessing since protein's structure is fixed
edge_index = data['misc_atom', 'misc_atom'].edge_index
src, dst = edge_index
edge_vec = data['misc_atom'].pos[dst.long()] - data['misc_atom'].pos[src.long()]
edge_length_emb = self.lig_distance_expansion(edge_vec.norm(dim=-1))
edge_sigma_emb = data['misc_atom'].node_sigma_emb[edge_index[0].long()]
edge_attr = torch.cat([edge_sigma_emb, edge_length_emb], 1)
edge_sh = o3.spherical_harmonics(self.sh_irreps, edge_vec, normalize=True, normalization='component')
edge_weight = self.get_edge_weight(edge_vec, self.lig_max_radius)
return node_attr, edge_index, edge_attr, edge_sh, edge_weight
def build_cross_conv_graph(self, data, cross_distance_cutoff):
# builds the cross edges between ligand and receptor
if torch.is_tensor(cross_distance_cutoff):
# different cutoff for every graph (depends on the diffusion time)
edge_index = radius(data['receptor'].pos / cross_distance_cutoff[data['receptor'].batch],
data['ligand'].pos / cross_distance_cutoff[data['ligand'].batch], 1,
data['receptor'].batch, data['ligand'].batch, max_num_neighbors=10000)
else:
edge_index = radius(data['receptor'].pos, data['ligand'].pos, cross_distance_cutoff,
data['receptor'].batch, data['ligand'].batch, max_num_neighbors=10000)
src, dst = edge_index
edge_vec = data['receptor'].pos[dst.long()] - data['ligand'].pos[src.long()]
edge_length_emb = self.cross_distance_expansion(edge_vec.norm(dim=-1))
edge_sigma_emb = data['ligand'].node_sigma_emb[src.long()]
edge_attr = torch.cat([edge_sigma_emb, edge_length_emb], 1)
edge_sh = o3.spherical_harmonics(self.sh_irreps, edge_vec, normalize=True, normalization='component')
rev_edge_sh = o3.spherical_harmonics(self.sh_irreps, -edge_vec, normalize=True, normalization='component')
cutoff_d = cross_distance_cutoff[data['ligand'].batch[src]].squeeze() if torch.is_tensor(cross_distance_cutoff) else cross_distance_cutoff
edge_weight = self.get_edge_weight(edge_vec, cutoff_d)
return edge_index, edge_attr, edge_sh, rev_edge_sh, edge_weight
def build_misc_cross_conv_graph(self, data, lr_cross_distance_cutoff):
# build the cross edges between ligan atoms, receptor residues and receptor atoms
# LIGAND to RECEPTOR
if torch.is_tensor(lr_cross_distance_cutoff):
# different cutoff for every graph
lr_edge_index = radius(data['receptor'].pos / lr_cross_distance_cutoff[data['receptor'].batch],
data['ligand'].pos / lr_cross_distance_cutoff[data['ligand'].batch], 1,
data['receptor'].batch, data['ligand'].batch, max_num_neighbors=10000)
else:
lr_edge_index = radius(data['receptor'].pos, data['ligand'].pos, lr_cross_distance_cutoff,
data['receptor'].batch, data['ligand'].batch, max_num_neighbors=10000)
lr_edge_vec = data['receptor'].pos[lr_edge_index[1].long()] - data['ligand'].pos[lr_edge_index[0].long()]
lr_edge_length_emb = self.cross_distance_expansion(lr_edge_vec.norm(dim=-1))
lr_edge_sigma_emb = data['ligand'].node_sigma_emb[lr_edge_index[0].long()]
lr_edge_attr = torch.cat([lr_edge_sigma_emb, lr_edge_length_emb], 1)
lr_edge_sh = o3.spherical_harmonics(self.sh_irreps, lr_edge_vec, normalize=True, normalization='component')
cutoff_d = lr_cross_distance_cutoff[data['ligand'].batch[lr_edge_index[0]]].squeeze() \
if torch.is_tensor(lr_cross_distance_cutoff) else lr_cross_distance_cutoff
lr_edge_weight = self.get_edge_weight(lr_edge_vec, cutoff_d)
# LIGAND to ATOM
la_edge_index = radius(data['misc_atom'].pos, data['ligand'].pos, self.lig_max_radius,
data['misc_atom'].batch, data['ligand'].batch, max_num_neighbors=10000)
la_edge_vec = data['misc_atom'].pos[la_edge_index[1].long()] - data['ligand'].pos[la_edge_index[0].long()]
la_edge_length_emb = self.cross_distance_expansion(la_edge_vec.norm(dim=-1))
la_edge_sigma_emb = data['ligand'].node_sigma_emb[la_edge_index[0].long()]
la_edge_attr = torch.cat([la_edge_sigma_emb, la_edge_length_emb], 1)
la_edge_sh = o3.spherical_harmonics(self.sh_irreps, la_edge_vec, normalize=True, normalization='component')
la_edge_weight = self.get_edge_weight(la_edge_vec, self.lig_max_radius)
# ATOM to RECEPTOR
ar_edge_index = data['misc_atom', 'receptor'].edge_index
ar_edge_vec = data['receptor'].pos[ar_edge_index[1].long()] - data['misc_atom'].pos[ar_edge_index[0].long()]
ar_edge_length_emb = self.rec_distance_expansion(ar_edge_vec.norm(dim=-1))
ar_edge_sigma_emb = data['misc_atom'].node_sigma_emb[ar_edge_index[0].long()]
ar_edge_attr = torch.cat([ar_edge_sigma_emb, ar_edge_length_emb], 1)
ar_edge_sh = o3.spherical_harmonics(self.sh_irreps, ar_edge_vec, normalize=True, normalization='component')
ar_edge_weight = 1
return lr_edge_index, lr_edge_attr, lr_edge_sh, lr_edge_weight, la_edge_index, la_edge_attr, \
la_edge_sh, la_edge_weight, ar_edge_index, ar_edge_attr, ar_edge_sh, ar_edge_weight
def build_center_conv_graph(self, data):
# builds the filter and edges for the convolution generating translational and rotational scores
edge_index = torch.cat([data['ligand'].batch.unsqueeze(0), torch.arange(len(data['ligand'].batch)).to(data['ligand'].x.device).unsqueeze(0)], dim=0)
center_pos, count = torch.zeros((data.num_graphs, 3)).to(data['ligand'].x.device), torch.zeros((data.num_graphs, 3)).to(data['ligand'].x.device)
center_pos.index_add_(0, index=data['ligand'].batch, source=data['ligand'].pos)
center_pos = center_pos / torch.bincount(data['ligand'].batch).unsqueeze(1)
edge_vec = data['ligand'].pos[edge_index[1]] - center_pos[edge_index[0]]
edge_attr = self.center_distance_expansion(edge_vec.norm(dim=-1))
edge_sigma_emb = data['ligand'].node_sigma_emb[edge_index[1].long()]
edge_attr = torch.cat([edge_attr, edge_sigma_emb], 1)
edge_sh = o3.spherical_harmonics(self.sh_irreps, edge_vec, normalize=True, normalization='component')
return edge_index, edge_attr, edge_sh
def build_bond_conv_graph(self, data):
# builds the graph for the convolution between the center of the rotatable bonds and the neighbouring nodes
bonds = data['ligand', 'ligand'].edge_index[:, data['ligand'].edge_mask].long()
bond_pos = (data['ligand'].pos[bonds[0]] + data['ligand'].pos[bonds[1]]) / 2
bond_batch = data['ligand'].batch[bonds[0]]
edge_index = radius(data['ligand'].pos, bond_pos, self.lig_max_radius, batch_x=data['ligand'].batch, batch_y=bond_batch)
edge_vec = data['ligand'].pos[edge_index[1]] - bond_pos[edge_index[0]]
edge_attr = self.lig_distance_expansion(edge_vec.norm(dim=-1))
edge_attr = self.final_edge_embedding(edge_attr)
edge_sh = o3.spherical_harmonics(self.sh_irreps, edge_vec, normalize=True, normalization='component')
edge_weight = self.get_edge_weight(edge_vec, self.lig_max_radius)
return bonds, edge_index, edge_attr, edge_sh, edge_weight