Spaces:
Sleeping
Sleeping
import math | |
from e3nn import o3 | |
import torch | |
from e3nn.o3 import Linear | |
from esm.pretrained import load_model_and_alphabet | |
from torch import nn | |
from torch.nn import functional as F | |
from torch_cluster import radius, radius_graph | |
from torch_scatter import scatter, scatter_mean | |
import numpy as np | |
from models.layers import GaussianSmearing, AtomEncoder | |
from models.tensor_layers import TensorProductConvLayer, get_irrep_seq | |
from utils import so3, torus | |
from datasets.process_mols import lig_feature_dims, rec_residue_feature_dims, rec_atom_feature_dims | |
class CGModel(torch.nn.Module): | |
def __init__(self, t_to_sigma, device, timestep_emb_func, in_lig_edge_features=4, sigma_embed_dim=32, sh_lmax=2, | |
ns=16, nv=4, num_conv_layers=2, lig_max_radius=5, rec_max_radius=30, cross_max_distance=250, | |
center_max_distance=30, distance_embed_dim=32, cross_distance_embed_dim=32, no_torsion=False, | |
scale_by_sigma=True, norm_by_sigma=True, use_second_order_repr=False, batch_norm=True, | |
dynamic_max_cross=False, dropout=0.0, smooth_edges=False, odd_parity=False, | |
separate_noise_schedule=False, lm_embedding_type=None, confidence_mode=False, | |
confidence_dropout=0, confidence_no_batchnorm=False, | |
asyncronous_noise_schedule=False, affinity_prediction=False, parallel=1, | |
parallel_aggregators="mean max min std", num_confidence_outputs=1, atom_num_confidence_outputs=1, fixed_center_conv=False, | |
no_aminoacid_identities=False, include_miscellaneous_atoms=False, | |
differentiate_convolutions=True, tp_weights_layers=2, num_prot_emb_layers=0, reduce_pseudoscalars=False, | |
embed_also_ligand=False, atom_confidence=False, sidechain_pred=False, depthwise_convolution=False): | |
super(CGModel, self).__init__() | |
assert parallel == 1, "not implemented" | |
assert (not no_aminoacid_identities) or (lm_embedding_type is None), "no language model emb without identities" | |
self.t_to_sigma = t_to_sigma | |
self.in_lig_edge_features = in_lig_edge_features | |
sigma_embed_dim *= (3 if separate_noise_schedule else 1) | |
self.sigma_embed_dim = sigma_embed_dim | |
self.lig_max_radius = lig_max_radius | |
self.rec_max_radius = rec_max_radius | |
self.include_miscellaneous_atoms = include_miscellaneous_atoms | |
self.cross_max_distance = cross_max_distance | |
self.dynamic_max_cross = dynamic_max_cross | |
self.center_max_distance = center_max_distance | |
self.distance_embed_dim = distance_embed_dim | |
self.cross_distance_embed_dim = cross_distance_embed_dim | |
self.sh_irreps = o3.Irreps.spherical_harmonics(lmax=sh_lmax) | |
self.ns, self.nv = ns, nv | |
self.scale_by_sigma = scale_by_sigma | |
self.norm_by_sigma = norm_by_sigma | |
self.device = device | |
self.no_torsion = no_torsion | |
self.smooth_edges = smooth_edges | |
self.odd_parity = odd_parity | |
self.timestep_emb_func = timestep_emb_func | |
self.separate_noise_schedule = separate_noise_schedule | |
self.confidence_mode = confidence_mode | |
self.num_conv_layers = num_conv_layers | |
self.num_prot_emb_layers = num_prot_emb_layers | |
self.asyncronous_noise_schedule = asyncronous_noise_schedule | |
self.affinity_prediction = affinity_prediction | |
self.fixed_center_conv = fixed_center_conv | |
self.no_aminoacid_identities = no_aminoacid_identities | |
self.differentiate_convolutions = differentiate_convolutions | |
self.reduce_pseudoscalars = reduce_pseudoscalars | |
self.atom_confidence = atom_confidence | |
self.atom_num_confidence_outputs = atom_num_confidence_outputs | |
self.sidechain_pred = sidechain_pred | |
self.lm_embedding_type = lm_embedding_type | |
if lm_embedding_type is None: | |
lm_embedding_dim = 0 | |
elif lm_embedding_type == "precomputed": | |
lm_embedding_dim=1280 | |
else: | |
lm, alphabet = load_model_and_alphabet(lm_embedding_type) | |
self.batch_converter = alphabet.get_batch_converter() | |
lm.lm_head = torch.nn.Identity() | |
lm.contact_head = torch.nn.Identity() | |
lm_embedding_dim = lm.embed_dim | |
self.lm = lm | |
atom_encoder_class = AtomEncoder | |
self.lig_node_embedding = atom_encoder_class(emb_dim=ns, feature_dims=lig_feature_dims, sigma_embed_dim=sigma_embed_dim) | |
self.lig_edge_embedding = nn.Sequential(nn.Linear(in_lig_edge_features + sigma_embed_dim + distance_embed_dim, ns),nn.ReLU(),nn.Dropout(dropout),nn.Linear(ns, ns)) | |
self.rec_node_embedding = atom_encoder_class(emb_dim=ns, feature_dims=rec_residue_feature_dims, sigma_embed_dim=0, lm_embedding_dim=lm_embedding_dim) | |
self.rec_edge_embedding = nn.Sequential(nn.Linear(distance_embed_dim, ns), nn.ReLU(), nn.Dropout(dropout), nn.Linear(ns, ns)) | |
self.rec_sigma_embedding = nn.Sequential(nn.Linear(sigma_embed_dim, ns), nn.ReLU(), nn.Dropout(dropout), nn.Linear(ns, ns)) | |
if self.include_miscellaneous_atoms: | |
self.misc_atom_node_embedding = atom_encoder_class(emb_dim=ns, feature_dims=rec_atom_feature_dims, sigma_embed_dim=sigma_embed_dim) | |
self.misc_atom_edge_embedding = nn.Sequential(nn.Linear(sigma_embed_dim + distance_embed_dim, ns), nn.ReLU(),nn.Dropout(dropout), nn.Linear(ns, ns)) | |
self.ar_edge_embedding = nn.Sequential(nn.Linear(sigma_embed_dim + distance_embed_dim, ns), nn.ReLU(),nn.Dropout(dropout), nn.Linear(ns, ns)) | |
self.la_edge_embedding = nn.Sequential(nn.Linear(sigma_embed_dim + cross_distance_embed_dim, ns), nn.ReLU(),nn.Dropout(dropout), nn.Linear(ns, ns)) | |
self.cross_edge_embedding = nn.Sequential(nn.Linear(sigma_embed_dim + cross_distance_embed_dim, ns), nn.ReLU(), nn.Dropout(dropout),nn.Linear(ns, ns)) | |
self.lig_distance_expansion = GaussianSmearing(0.0, lig_max_radius, distance_embed_dim) | |
self.rec_distance_expansion = GaussianSmearing(0.0, rec_max_radius, distance_embed_dim) | |
self.cross_distance_expansion = GaussianSmearing(0.0, cross_max_distance, cross_distance_embed_dim) | |
irrep_seq = get_irrep_seq(ns, nv, use_second_order_repr, reduce_pseudoscalars) | |
assert not self.include_miscellaneous_atoms, "currently not supported" | |
rec_emb_layers = [] | |
for i in range(num_prot_emb_layers): | |
in_irreps = irrep_seq[min(i, len(irrep_seq) - 1)] | |
out_irreps = irrep_seq[min(i + 1, len(irrep_seq) - 1)] | |
layer = TensorProductConvLayer( | |
in_irreps=in_irreps, | |
sh_irreps=self.sh_irreps, | |
out_irreps=out_irreps, | |
n_edge_features=3 * ns, | |
hidden_features=3 * ns, | |
residual=True, | |
batch_norm=batch_norm, | |
dropout=dropout, | |
faster=sh_lmax == 1 and not use_second_order_repr, | |
tp_weights_layers=tp_weights_layers, | |
edge_groups=1, | |
depthwise=depthwise_convolution | |
) | |
rec_emb_layers.append(layer) | |
self.rec_emb_layers = nn.ModuleList(rec_emb_layers) | |
self.embed_also_ligand = embed_also_ligand | |
if embed_also_ligand: | |
lig_emb_layers = [] | |
for i in range(num_prot_emb_layers): | |
in_irreps = irrep_seq[min(i, len(irrep_seq) - 1)] | |
out_irreps = irrep_seq[min(i + 1, len(irrep_seq) - 1)] | |
layer = TensorProductConvLayer( | |
in_irreps=in_irreps, | |
sh_irreps=self.sh_irreps, | |
out_irreps=out_irreps, | |
n_edge_features=3 * ns, | |
hidden_features=3 * ns, | |
residual=True, | |
batch_norm=batch_norm, | |
dropout=dropout, | |
faster=sh_lmax == 1 and not use_second_order_repr, | |
tp_weights_layers=tp_weights_layers, | |
edge_groups=1, | |
depthwise=depthwise_convolution | |
) | |
lig_emb_layers.append(layer) | |
self.lig_emb_layers = nn.ModuleList(lig_emb_layers) | |
conv_layers = [] | |
for i in range(num_prot_emb_layers, num_prot_emb_layers + num_conv_layers): | |
in_irreps = irrep_seq[min(i, len(irrep_seq) - 1)] | |
out_irreps = irrep_seq[min(i + 1, len(irrep_seq) - 1)] | |
layer = TensorProductConvLayer( | |
in_irreps=in_irreps, | |
sh_irreps=self.sh_irreps, | |
out_irreps=out_irreps, | |
n_edge_features=3 * ns, | |
hidden_features=3 * ns, | |
residual=True, | |
batch_norm=batch_norm, | |
dropout=dropout, | |
faster=sh_lmax == 1 and not use_second_order_repr, | |
tp_weights_layers=tp_weights_layers, | |
edge_groups=1 if not differentiate_convolutions else (2 if i == num_prot_emb_layers + num_conv_layers - 1 else 4), | |
depthwise=depthwise_convolution | |
) | |
conv_layers.append(layer) | |
self.conv_layers = nn.ModuleList(conv_layers) | |
if sidechain_pred: | |
self.sidechain_predictor = Linear( | |
irreps_in=irrep_seq[min(num_prot_emb_layers + num_conv_layers, len(irrep_seq) - 1)], | |
irreps_out='4x0e + 2x1e + 4x0o + 2x1o', | |
internal_weights=True, | |
shared_weights=True, | |
) | |
if self.confidence_mode: | |
input_size = ns + (nv if reduce_pseudoscalars else ns) if num_conv_layers + num_prot_emb_layers >= 3 else ns | |
if self.atom_confidence: | |
self.atom_confidence_predictor = nn.Sequential( | |
nn.Linear(input_size, ns), | |
nn.BatchNorm1d(ns) if not confidence_no_batchnorm else nn.Identity(), | |
nn.ReLU(), | |
nn.Dropout(confidence_dropout), | |
nn.Linear(ns, ns), | |
nn.BatchNorm1d(ns) if not confidence_no_batchnorm else nn.Identity(), | |
nn.ReLU(), | |
nn.Dropout(confidence_dropout), | |
nn.Linear(ns, atom_num_confidence_outputs + ns) | |
) | |
input_size = ns | |
self.confidence_predictor = nn.Sequential( | |
nn.Linear(input_size, ns), | |
nn.BatchNorm1d(ns) if not confidence_no_batchnorm else nn.Identity(), | |
nn.ReLU(), | |
nn.Dropout(confidence_dropout), | |
nn.Linear(ns, ns), | |
nn.BatchNorm1d(ns) if not confidence_no_batchnorm else nn.Identity(), | |
nn.ReLU(), | |
nn.Dropout(confidence_dropout), | |
nn.Linear(ns, num_confidence_outputs + (1 if self.affinity_prediction else 0)) | |
) | |
else: | |
# center of mass translation and rotation components | |
self.center_distance_expansion = GaussianSmearing(0.0, center_max_distance, distance_embed_dim) | |
self.center_edge_embedding = nn.Sequential( | |
nn.Linear(distance_embed_dim + sigma_embed_dim, ns), | |
nn.ReLU(), | |
nn.Dropout(dropout), | |
nn.Linear(ns, ns) | |
) | |
self.final_conv = TensorProductConvLayer( | |
in_irreps=self.conv_layers[-1].out_irreps, | |
sh_irreps=self.sh_irreps, | |
out_irreps=f'2x1o + 2x1e' if not self.odd_parity else '1x1o + 1x1e', | |
n_edge_features=2 * ns, | |
residual=False, | |
dropout=dropout, | |
batch_norm=batch_norm | |
) | |
self.tr_final_layer = nn.Sequential(nn.Linear(1 + sigma_embed_dim, ns),nn.Dropout(dropout), nn.ReLU(), nn.Linear(ns, 1)) | |
self.rot_final_layer = nn.Sequential(nn.Linear(1 + sigma_embed_dim, ns),nn.Dropout(dropout), nn.ReLU(), nn.Linear(ns, 1)) | |
if not no_torsion: | |
# torsion angles components | |
self.final_edge_embedding = nn.Sequential( | |
nn.Linear(distance_embed_dim, ns), | |
nn.ReLU(), | |
nn.Dropout(dropout), | |
nn.Linear(ns, ns) | |
) | |
self.final_tp_tor = o3.FullTensorProduct(self.sh_irreps, "2e") | |
self.tor_bond_conv = TensorProductConvLayer( | |
in_irreps=self.conv_layers[-1].out_irreps, | |
sh_irreps=self.final_tp_tor.irreps_out, | |
out_irreps=f'{ns}x0o + {ns}x0e' if not self.odd_parity else f'{ns}x0o', | |
n_edge_features=3 * ns, | |
residual=False, | |
dropout=dropout, | |
batch_norm=batch_norm | |
) | |
self.tor_final_layer = nn.Sequential( | |
nn.Linear(2 * ns if not self.odd_parity else ns, ns, bias=False), | |
nn.Tanh(), | |
nn.Dropout(dropout), | |
nn.Linear(ns, 1, bias=False) | |
) | |
def ligand_embedding(self, data): | |
# ligand embedding | |
lig_node_attr, lig_edge_index, lig_edge_attr, lig_edge_sh, lig_edge_weight = self.build_lig_conv_graph(data) | |
lig_node_attr = self.lig_node_embedding(lig_node_attr) | |
lig_edge_attr = self.lig_edge_embedding(lig_edge_attr) | |
assert self.embed_also_ligand, "otherwise reimplement padding" | |
for l in range(len(self.lig_emb_layers)): | |
edge_attr_ = torch.cat([lig_edge_attr, lig_node_attr[lig_edge_index[0], :self.ns], | |
lig_node_attr[lig_edge_index[1], :self.ns]], -1) | |
lig_node_attr = self.lig_emb_layers[l](lig_node_attr, lig_edge_index, edge_attr_, lig_edge_sh, | |
edge_weight=lig_edge_weight) | |
return lig_node_attr, lig_edge_index, lig_edge_attr, lig_edge_sh, lig_edge_weight | |
def embedding(self, data): | |
if not hasattr(data['receptor'], "rec_node_attr"): | |
if self.lm_embedding_type not in [None, 'precomputed']: | |
sequences = [s for l in data['receptor'].sequence for s in l] | |
if isinstance(sequences[0], list): | |
sequences = [s for l in sequences for s in l] | |
sequences = [(i, s) for i, s in enumerate(sequences)] | |
batch_labels, batch_strs, batch_tokens = self.batch_converter(sequences) | |
out = self.lm(batch_tokens.to(data['receptor'].x.device), repr_layers=[self.lm.num_layers], return_contacts=False) | |
rec_lm_emb = torch.cat([t[:len(sequences[i][1])] for i, t in enumerate(out['representations'][self.lm.num_layers])], dim=0) | |
data['receptor'].x = torch.cat([data['receptor'].x, rec_lm_emb], dim=-1) | |
rec_node_attr, rec_edge_attr, rec_edge_sh, rec_edge_weight = self.build_rec_conv_graph(data) | |
rec_node_attr = self.rec_node_embedding(rec_node_attr) | |
rec_edge_attr = self.rec_edge_embedding(rec_edge_attr) | |
for l in range(len(self.rec_emb_layers)): | |
edge_attr_ = torch.cat([rec_edge_attr, rec_node_attr[data['receptor', 'receptor'].edge_index[0], :self.ns], rec_node_attr[data['receptor', 'receptor'].edge_index[1], :self.ns]], -1) | |
rec_node_attr = self.rec_emb_layers[l](rec_node_attr, data['receptor', 'receptor'].edge_index, edge_attr_, rec_edge_sh, edge_weight=rec_edge_weight) | |
data['receptor'].rec_node_attr = rec_node_attr | |
data['receptor', 'receptor'].rec_edge_attr = rec_edge_attr | |
data['receptor', 'receptor'].edge_sh = rec_edge_sh | |
data['receptor', 'receptor'].edge_weight = rec_edge_weight | |
# receptor embedding | |
rec_sigma_emb = self.rec_sigma_embedding(self.timestep_emb_func(data.complex_t['tr'])) | |
rec_node_attr = data['receptor'].rec_node_attr + 0 | |
rec_node_attr[:, :self.ns] = rec_node_attr[:, :self.ns] + rec_sigma_emb[data['receptor'].batch] | |
rec_edge_attr = data['receptor', 'receptor'].rec_edge_attr + rec_sigma_emb[data['receptor'].batch[data['receptor', 'receptor'].edge_index[0]]] | |
lig_node_attr, lig_edge_index, lig_edge_attr, lig_edge_sh, lig_edge_weight = self.ligand_embedding(data) | |
return lig_node_attr, lig_edge_index, lig_edge_attr, lig_edge_sh, lig_edge_weight, \ | |
rec_node_attr, data['receptor', 'receptor'].edge_index, rec_edge_attr, data['receptor', 'receptor'].edge_sh, data['receptor', 'receptor'].edge_weight | |
def forward(self, data): | |
if self.no_aminoacid_identities: | |
data['receptor'].x = data['receptor'].x * 0 | |
if not self.confidence_mode: | |
tr_sigma, rot_sigma, tor_sigma = self.t_to_sigma(*[data.complex_t[noise_type] for noise_type in ['tr', 'rot', 'tor']]) | |
else: | |
tr_sigma, rot_sigma, tor_sigma = [data.complex_t[noise_type] for noise_type in ['tr', 'rot', 'tor']] | |
lig_node_attr, lig_edge_index, lig_edge_attr, lig_edge_sh, lig_edge_weight, rec_node_attr, \ | |
rec_edge_index, rec_edge_attr, rec_edge_sh, rec_edge_weight = self.embedding(data) | |
# build cross graph | |
if self.dynamic_max_cross: | |
cross_cutoff = (tr_sigma * 3 + 20).unsqueeze(1) | |
else: | |
cross_cutoff = self.cross_max_distance | |
lr_edge_index, lr_edge_attr, lr_edge_sh, rev_lr_edge_sh, lr_edge_weight = self.build_cross_conv_graph(data, cross_cutoff) | |
lr_edge_attr = self.cross_edge_embedding(lr_edge_attr) | |
node_attr = torch.cat([lig_node_attr, rec_node_attr], dim=0) | |
lr_edge_index[1] = lr_edge_index[1] + len(lig_node_attr) | |
edge_index = torch.cat([lig_edge_index, lr_edge_index, rec_edge_index + len(lig_node_attr), | |
torch.flip(lr_edge_index, dims=[0])], dim=1) | |
edge_attr = torch.cat([lig_edge_attr, lr_edge_attr, rec_edge_attr, lr_edge_attr], dim=0) | |
edge_sh = torch.cat([lig_edge_sh, lr_edge_sh, rec_edge_sh, rev_lr_edge_sh], dim=0) | |
edge_weight = torch.cat([lig_edge_weight, lr_edge_weight, rec_edge_weight, lr_edge_weight], | |
dim=0) if torch.is_tensor(lig_edge_weight) else torch.ones((len(edge_index[0]), 1), | |
device=edge_index.device) | |
s1, s2, s3 = len(lig_edge_index[0]), len(lig_edge_index[0]) + len(lr_edge_index[0]), len(lig_edge_index[0]) + len(lr_edge_index[0]) + len(rec_edge_index[0]) | |
for l in range(len(self.conv_layers)): | |
if l < len(self.conv_layers) - 1: | |
edge_attr_ = torch.cat( | |
[edge_attr, node_attr[edge_index[0], :self.ns], node_attr[edge_index[1], :self.ns]], -1) | |
if self.differentiate_convolutions: edge_attr_ = [edge_attr_[:s1], edge_attr_[s1:s2], edge_attr_[s2:s3], edge_attr_[s3:]] | |
node_attr = self.conv_layers[l](node_attr, edge_index, edge_attr_, edge_sh, edge_weight=edge_weight) | |
else: | |
edge_attr_ = torch.cat([edge_attr[:s2], node_attr[edge_index[0, :s2], :self.ns], node_attr[edge_index[1, :s2], :self.ns]], -1) | |
if self.differentiate_convolutions: edge_attr_ = [edge_attr_[:s1], edge_attr_[s1:s2]] | |
node_attr = self.conv_layers[l](node_attr, edge_index[:, :s2], edge_attr_, edge_sh[:s2], edge_weight=edge_weight[:s2]) | |
lig_node_attr = node_attr[:len(lig_node_attr)] | |
# compute confidence score | |
if self.confidence_mode: | |
scalar_lig_attr = torch.cat([lig_node_attr[:,:self.ns], lig_node_attr[:,-(self.nv if self.reduce_pseudoscalars else self.ns):] ], dim=1) \ | |
if self.num_conv_layers + self.num_prot_emb_layers >= 3 else lig_node_attr[:,:self.ns] | |
if self.atom_confidence: | |
scalar_lig_attr = self.atom_confidence_predictor(scalar_lig_attr) | |
atom_confidence = scalar_lig_attr[:, :self.atom_num_confidence_outputs] | |
scalar_lig_attr = scalar_lig_attr[:, self.atom_num_confidence_outputs:] | |
else: | |
atom_confidence = torch.zeros((len(lig_node_attr),), device=lig_node_attr.device) | |
confidence = self.confidence_predictor(scatter_mean(scalar_lig_attr, data['ligand'].batch, dim=0)).squeeze(dim=-1) | |
return confidence, atom_confidence | |
# compute translational and rotational score vectors | |
center_edge_index, center_edge_attr, center_edge_sh = self.build_center_conv_graph(data) | |
center_edge_attr = self.center_edge_embedding(center_edge_attr) | |
if self.fixed_center_conv: | |
center_edge_attr = torch.cat([center_edge_attr, lig_node_attr[center_edge_index[1], :self.ns]], -1) | |
else: | |
center_edge_attr = torch.cat([center_edge_attr, lig_node_attr[center_edge_index[0], :self.ns]], -1) | |
global_pred = self.final_conv(lig_node_attr, center_edge_index, center_edge_attr, center_edge_sh, out_nodes=data.num_graphs) | |
tr_pred = global_pred[:, :3] + (global_pred[:, 6:9] if not self.odd_parity else 0) | |
rot_pred = global_pred[:, 3:6] + (global_pred[:, 9:] if not self.odd_parity else 0) | |
if self.separate_noise_schedule: | |
data.graph_sigma_emb = torch.cat([self.timestep_emb_func(data.complex_t[noise_type]) for noise_type in ['tr','rot','tor']], dim=1) | |
elif self.asyncronous_noise_schedule: | |
data.graph_sigma_emb = self.timestep_emb_func(data.complex_t['t']) | |
else: # tr rot and tor noise is all the same in this case | |
data.graph_sigma_emb = self.timestep_emb_func(data.complex_t['tr']) | |
# fix the magnitude of translational and rotational score vectors | |
tr_norm = torch.linalg.vector_norm(tr_pred, dim=1).unsqueeze(1) | |
tr_pred = tr_pred / tr_norm * self.tr_final_layer(torch.cat([tr_norm, data.graph_sigma_emb], dim=1)) | |
rot_norm = torch.linalg.vector_norm(rot_pred, dim=1).unsqueeze(1) | |
rot_pred = rot_pred / rot_norm * self.rot_final_layer(torch.cat([rot_norm, data.graph_sigma_emb], dim=1)) | |
if self.scale_by_sigma: | |
tr_pred = tr_pred / tr_sigma.unsqueeze(1) | |
rot_pred = rot_pred * so3.score_norm(rot_sigma.cpu()).unsqueeze(1).to(data['ligand'].x.device) | |
# predict sidechain orientation | |
sidechain_pred = None | |
if self.sidechain_pred: | |
rec_node_attr = node_attr[len(lig_node_attr):] | |
sidechain_pred = self.sidechain_predictor(rec_node_attr) | |
sidechain_pred = sidechain_pred[:, :10] + sidechain_pred[:, 10:] # sum even and odd components | |
if self.no_torsion or data['ligand'].edge_mask.sum() == 0: return tr_pred, rot_pred, torch.empty(0, device=self.device), sidechain_pred | |
# torsional components | |
tor_bonds, tor_edge_index, tor_edge_attr, tor_edge_sh, tor_edge_weight = self.build_bond_conv_graph(data) | |
tor_bond_vec = data['ligand'].pos[tor_bonds[1]] - data['ligand'].pos[tor_bonds[0]] | |
tor_bond_attr = lig_node_attr[tor_bonds[0]] + lig_node_attr[tor_bonds[1]] | |
tor_bonds_sh = o3.spherical_harmonics("2e", tor_bond_vec, normalize=True, normalization='component') | |
tor_edge_sh = self.final_tp_tor(tor_edge_sh, tor_bonds_sh[tor_edge_index[0]]) | |
tor_edge_attr = torch.cat([tor_edge_attr, lig_node_attr[tor_edge_index[1], :self.ns], | |
tor_bond_attr[tor_edge_index[0], :self.ns]], -1) | |
tor_pred = self.tor_bond_conv(lig_node_attr, tor_edge_index, tor_edge_attr, tor_edge_sh, | |
out_nodes=data['ligand'].edge_mask.sum(), reduce='mean', edge_weight=tor_edge_weight) | |
tor_pred = self.tor_final_layer(tor_pred).squeeze(1) | |
edge_sigma = tor_sigma[data['ligand'].batch][data['ligand', 'ligand'].edge_index[0]][data['ligand'].edge_mask] | |
if self.scale_by_sigma: | |
tor_pred = tor_pred * torch.sqrt(torch.tensor(torus.score_norm(edge_sigma.cpu().numpy())).float() | |
.to(data['ligand'].x.device)) | |
return tr_pred, rot_pred, tor_pred, sidechain_pred | |
def torsional_forward(self, data): | |
tor_sigma = self.t_to_sigma(data.complex_t['tor']) | |
# build ligand graph | |
lig_node_attr, lig_edge_index, lig_edge_attr, lig_edge_sh, lig_edge_weight = self.ligand_embedding(data) | |
if self.separate_noise_schedule: | |
data.graph_sigma_emb = torch.cat([self.timestep_emb_func(data.complex_t[noise_type]) for noise_type in ['tr','rot','tor']], dim=1) | |
elif self.asyncronous_noise_schedule: | |
data.graph_sigma_emb = self.timestep_emb_func(data.complex_t['t']) | |
else: # tr rot and tor noise is all the same in this case | |
data.graph_sigma_emb = self.timestep_emb_func(data.complex_t['tr']) | |
# torsional components | |
tor_bonds, tor_edge_index, tor_edge_attr, tor_edge_sh, tor_edge_weight = self.build_bond_conv_graph(data) | |
tor_bond_vec = data['ligand'].pos[tor_bonds[1]] - data['ligand'].pos[tor_bonds[0]] | |
tor_bond_attr = lig_node_attr[tor_bonds[0]] + lig_node_attr[tor_bonds[1]] | |
tor_bonds_sh = o3.spherical_harmonics("2e", tor_bond_vec, normalize=True, normalization='component') | |
tor_edge_sh = self.final_tp_tor(tor_edge_sh, tor_bonds_sh[tor_edge_index[0]]) | |
tor_edge_attr = torch.cat([tor_edge_attr, lig_node_attr[tor_edge_index[1], :self.ns], | |
tor_bond_attr[tor_edge_index[0], :self.ns]], -1) | |
tor_pred = self.tor_bond_conv(lig_node_attr, tor_edge_index, tor_edge_attr, tor_edge_sh, | |
out_nodes=data['ligand'].edge_mask.sum(), reduce='mean', edge_weight=tor_edge_weight) | |
tor_pred = self.tor_final_layer(tor_pred).squeeze(1) | |
edge_sigma = tor_sigma[data['ligand'].batch][data['ligand', 'ligand'].edge_index[0]][data['ligand'].edge_mask] | |
if self.scale_by_sigma: | |
tor_pred = tor_pred * torch.sqrt(torch.tensor(torus.score_norm(edge_sigma.cpu().numpy())).float() | |
.to(data['ligand'].x.device)) | |
return 0, 0, tor_pred, 0 | |
def get_edge_weight(self, edge_vec, max_norm): | |
# computes weights for edges that are decreasing with the distance | |
# it has an effect only if smooth edges is true | |
if self.smooth_edges: | |
normalised_norm = torch.clip(edge_vec.norm(dim=-1) * np.pi / max_norm, max=np.pi) | |
return 0.5 * (torch.cos(normalised_norm) + 1.0).unsqueeze(-1) | |
return 1.0 | |
def build_lig_conv_graph(self, data): | |
# builds the ligand graph edges and initial node and edge features | |
if self.separate_noise_schedule: | |
data['ligand'].node_sigma_emb = torch.cat([self.timestep_emb_func(data['ligand'].node_t[noise_type]) for noise_type in ['tr','rot','tor']], dim=1) | |
elif self.asyncronous_noise_schedule: | |
data['ligand'].node_sigma_emb = self.timestep_emb_func(data['ligand'].node_t['t']) | |
else: | |
data['ligand'].node_sigma_emb = self.timestep_emb_func(data['ligand'].node_t['tr']) # tr rot and tor noise is all the same | |
# compute edges | |
radius_edges = radius_graph(data['ligand'].pos, self.lig_max_radius, data['ligand'].batch) | |
edge_index = torch.cat([data['ligand', 'ligand'].edge_index, radius_edges], 1).long() | |
edge_attr = torch.cat([ | |
data['ligand', 'ligand'].edge_attr, | |
torch.zeros(radius_edges.shape[-1], self.in_lig_edge_features, device=data['ligand'].x.device) | |
], 0) | |
# compute initial features | |
edge_sigma_emb = data['ligand'].node_sigma_emb[edge_index[0].long()] | |
edge_attr = torch.cat([edge_attr, edge_sigma_emb], 1) | |
node_attr = torch.cat([data['ligand'].x, data['ligand'].node_sigma_emb], 1) | |
src, dst = edge_index | |
edge_vec = data['ligand'].pos[dst.long()] - data['ligand'].pos[src.long()] | |
edge_length_emb = self.lig_distance_expansion(edge_vec.norm(dim=-1)) | |
edge_attr = torch.cat([edge_attr, edge_length_emb], 1) | |
edge_sh = o3.spherical_harmonics(self.sh_irreps, edge_vec, normalize=True, normalization='component') | |
edge_weight = self.get_edge_weight(edge_vec, self.lig_max_radius) | |
return node_attr, edge_index, edge_attr, edge_sh, edge_weight | |
def build_rec_conv_graph(self, data): | |
# builds the receptor initial node and edge embeddings | |
assert not self.separate_noise_schedule or self.asyncronous_noise_schedule, "removed support in this function" | |
node_attr = data['receptor'].x | |
# this assumes the edges were already created in preprocessing since protein's structure is fixed | |
edge_index = data['receptor', 'receptor'].edge_index | |
src, dst = edge_index | |
edge_vec = data['receptor'].pos[dst.long()] - data['receptor'].pos[src.long()] | |
edge_length_emb = self.rec_distance_expansion(edge_vec.norm(dim=-1)) | |
edge_attr = edge_length_emb | |
edge_sh = o3.spherical_harmonics(self.sh_irreps, edge_vec, normalize=True, normalization='component') | |
edge_weight = self.get_edge_weight(edge_vec, self.rec_max_radius) | |
return node_attr, edge_attr, edge_sh, edge_weight | |
def build_misc_atom_conv_graph(self, data): | |
# build the graph between receptor misc_atoms | |
if self.separate_noise_schedule: | |
data['misc_atom'].node_sigma_emb = torch.cat([self.timestep_emb_func(data['misc_atom'].node_t[noise_type]) for noise_type in ['tr', 'rot', 'tor']],dim=1) | |
elif self.asyncronous_noise_schedule: | |
data['misc_atom'].node_sigma_emb = self.timestep_emb_func(data['misc_atom'].node_t['t']) | |
else: | |
data['misc_atom'].node_sigma_emb = self.timestep_emb_func(data['misc_atom'].node_t['tr']) # tr rot and tor noise is all the same | |
node_attr = torch.cat([data['misc_atom'].x, data['misc_atom'].node_sigma_emb], 1) | |
# this assumes the edges were already created in preprocessing since protein's structure is fixed | |
edge_index = data['misc_atom', 'misc_atom'].edge_index | |
src, dst = edge_index | |
edge_vec = data['misc_atom'].pos[dst.long()] - data['misc_atom'].pos[src.long()] | |
edge_length_emb = self.lig_distance_expansion(edge_vec.norm(dim=-1)) | |
edge_sigma_emb = data['misc_atom'].node_sigma_emb[edge_index[0].long()] | |
edge_attr = torch.cat([edge_sigma_emb, edge_length_emb], 1) | |
edge_sh = o3.spherical_harmonics(self.sh_irreps, edge_vec, normalize=True, normalization='component') | |
edge_weight = self.get_edge_weight(edge_vec, self.lig_max_radius) | |
return node_attr, edge_index, edge_attr, edge_sh, edge_weight | |
def build_cross_conv_graph(self, data, cross_distance_cutoff): | |
# builds the cross edges between ligand and receptor | |
if torch.is_tensor(cross_distance_cutoff): | |
# different cutoff for every graph (depends on the diffusion time) | |
edge_index = radius(data['receptor'].pos / cross_distance_cutoff[data['receptor'].batch], | |
data['ligand'].pos / cross_distance_cutoff[data['ligand'].batch], 1, | |
data['receptor'].batch, data['ligand'].batch, max_num_neighbors=10000) | |
else: | |
edge_index = radius(data['receptor'].pos, data['ligand'].pos, cross_distance_cutoff, | |
data['receptor'].batch, data['ligand'].batch, max_num_neighbors=10000) | |
src, dst = edge_index | |
edge_vec = data['receptor'].pos[dst.long()] - data['ligand'].pos[src.long()] | |
edge_length_emb = self.cross_distance_expansion(edge_vec.norm(dim=-1)) | |
edge_sigma_emb = data['ligand'].node_sigma_emb[src.long()] | |
edge_attr = torch.cat([edge_sigma_emb, edge_length_emb], 1) | |
edge_sh = o3.spherical_harmonics(self.sh_irreps, edge_vec, normalize=True, normalization='component') | |
rev_edge_sh = o3.spherical_harmonics(self.sh_irreps, -edge_vec, normalize=True, normalization='component') | |
cutoff_d = cross_distance_cutoff[data['ligand'].batch[src]].squeeze() if torch.is_tensor(cross_distance_cutoff) else cross_distance_cutoff | |
edge_weight = self.get_edge_weight(edge_vec, cutoff_d) | |
return edge_index, edge_attr, edge_sh, rev_edge_sh, edge_weight | |
def build_misc_cross_conv_graph(self, data, lr_cross_distance_cutoff): | |
# build the cross edges between ligan atoms, receptor residues and receptor atoms | |
# LIGAND to RECEPTOR | |
if torch.is_tensor(lr_cross_distance_cutoff): | |
# different cutoff for every graph | |
lr_edge_index = radius(data['receptor'].pos / lr_cross_distance_cutoff[data['receptor'].batch], | |
data['ligand'].pos / lr_cross_distance_cutoff[data['ligand'].batch], 1, | |
data['receptor'].batch, data['ligand'].batch, max_num_neighbors=10000) | |
else: | |
lr_edge_index = radius(data['receptor'].pos, data['ligand'].pos, lr_cross_distance_cutoff, | |
data['receptor'].batch, data['ligand'].batch, max_num_neighbors=10000) | |
lr_edge_vec = data['receptor'].pos[lr_edge_index[1].long()] - data['ligand'].pos[lr_edge_index[0].long()] | |
lr_edge_length_emb = self.cross_distance_expansion(lr_edge_vec.norm(dim=-1)) | |
lr_edge_sigma_emb = data['ligand'].node_sigma_emb[lr_edge_index[0].long()] | |
lr_edge_attr = torch.cat([lr_edge_sigma_emb, lr_edge_length_emb], 1) | |
lr_edge_sh = o3.spherical_harmonics(self.sh_irreps, lr_edge_vec, normalize=True, normalization='component') | |
cutoff_d = lr_cross_distance_cutoff[data['ligand'].batch[lr_edge_index[0]]].squeeze() \ | |
if torch.is_tensor(lr_cross_distance_cutoff) else lr_cross_distance_cutoff | |
lr_edge_weight = self.get_edge_weight(lr_edge_vec, cutoff_d) | |
# LIGAND to ATOM | |
la_edge_index = radius(data['misc_atom'].pos, data['ligand'].pos, self.lig_max_radius, | |
data['misc_atom'].batch, data['ligand'].batch, max_num_neighbors=10000) | |
la_edge_vec = data['misc_atom'].pos[la_edge_index[1].long()] - data['ligand'].pos[la_edge_index[0].long()] | |
la_edge_length_emb = self.cross_distance_expansion(la_edge_vec.norm(dim=-1)) | |
la_edge_sigma_emb = data['ligand'].node_sigma_emb[la_edge_index[0].long()] | |
la_edge_attr = torch.cat([la_edge_sigma_emb, la_edge_length_emb], 1) | |
la_edge_sh = o3.spherical_harmonics(self.sh_irreps, la_edge_vec, normalize=True, normalization='component') | |
la_edge_weight = self.get_edge_weight(la_edge_vec, self.lig_max_radius) | |
# ATOM to RECEPTOR | |
ar_edge_index = data['misc_atom', 'receptor'].edge_index | |
ar_edge_vec = data['receptor'].pos[ar_edge_index[1].long()] - data['misc_atom'].pos[ar_edge_index[0].long()] | |
ar_edge_length_emb = self.rec_distance_expansion(ar_edge_vec.norm(dim=-1)) | |
ar_edge_sigma_emb = data['misc_atom'].node_sigma_emb[ar_edge_index[0].long()] | |
ar_edge_attr = torch.cat([ar_edge_sigma_emb, ar_edge_length_emb], 1) | |
ar_edge_sh = o3.spherical_harmonics(self.sh_irreps, ar_edge_vec, normalize=True, normalization='component') | |
ar_edge_weight = 1 | |
return lr_edge_index, lr_edge_attr, lr_edge_sh, lr_edge_weight, la_edge_index, la_edge_attr, \ | |
la_edge_sh, la_edge_weight, ar_edge_index, ar_edge_attr, ar_edge_sh, ar_edge_weight | |
def build_center_conv_graph(self, data): | |
# builds the filter and edges for the convolution generating translational and rotational scores | |
edge_index = torch.cat([data['ligand'].batch.unsqueeze(0), torch.arange(len(data['ligand'].batch)).to(data['ligand'].x.device).unsqueeze(0)], dim=0) | |
center_pos, count = torch.zeros((data.num_graphs, 3)).to(data['ligand'].x.device), torch.zeros((data.num_graphs, 3)).to(data['ligand'].x.device) | |
center_pos.index_add_(0, index=data['ligand'].batch, source=data['ligand'].pos) | |
center_pos = center_pos / torch.bincount(data['ligand'].batch).unsqueeze(1) | |
edge_vec = data['ligand'].pos[edge_index[1]] - center_pos[edge_index[0]] | |
edge_attr = self.center_distance_expansion(edge_vec.norm(dim=-1)) | |
edge_sigma_emb = data['ligand'].node_sigma_emb[edge_index[1].long()] | |
edge_attr = torch.cat([edge_attr, edge_sigma_emb], 1) | |
edge_sh = o3.spherical_harmonics(self.sh_irreps, edge_vec, normalize=True, normalization='component') | |
return edge_index, edge_attr, edge_sh | |
def build_bond_conv_graph(self, data): | |
# builds the graph for the convolution between the center of the rotatable bonds and the neighbouring nodes | |
bonds = data['ligand', 'ligand'].edge_index[:, data['ligand'].edge_mask].long() | |
bond_pos = (data['ligand'].pos[bonds[0]] + data['ligand'].pos[bonds[1]]) / 2 | |
bond_batch = data['ligand'].batch[bonds[0]] | |
edge_index = radius(data['ligand'].pos, bond_pos, self.lig_max_radius, batch_x=data['ligand'].batch, batch_y=bond_batch) | |
edge_vec = data['ligand'].pos[edge_index[1]] - bond_pos[edge_index[0]] | |
edge_attr = self.lig_distance_expansion(edge_vec.norm(dim=-1)) | |
edge_attr = self.final_edge_embedding(edge_attr) | |
edge_sh = o3.spherical_harmonics(self.sh_irreps, edge_vec, normalize=True, normalization='component') | |
edge_weight = self.get_edge_weight(edge_vec, self.lig_max_radius) | |
return bonds, edge_index, edge_attr, edge_sh, edge_weight | |