GenFBDD / app /fn.py
libokj's picture
Bug fixes
642d891
import urllib.parse
from datetime import datetime
from email.mime.multipart import MIMEMultipart
from email.mime.text import MIMEText
from email.utils import formatdate, make_msgid
from functools import cache
import html
import os
from pathlib import Path
import smtplib
import sys
import tempfile
import pandas as pd
from bokeh.models import NumberFormatter, BooleanFormatter, HTMLTemplateFormatter
import gradio as gr
import pytz
import panel as pn
import seaborn as sns
from markdown import markdown
from rdkit import Chem, RDConfig
from rdkit.Chem import Crippen, Descriptors, rdMolDescriptors, Lipinski, rdmolops, Draw, rdDepictor
import requests
from app import static
sys.path.append(str(Path(RDConfig.RDContribDir) / 'SA_Score'))
import sascorer
COL_ALIASES = {
'out_path': 'Pose',
'ligand_conf_path': 'Pose',
'ID1': 'Compound ID',
'ID2': 'Target ID',
'X1': 'Fragment SMILES',
'X1^': 'Compound SMILES',
'name': 'Complex Name',
}
COL_DTYPE = {
'out_path': 'str',
'ligand_conf_path': 'str',
'ID1': 'str',
'ID2': 'str',
'X1': 'str',
'X1^': 'str',
'name': 'str',
}
def lipinski(mol):
"""
Lipinski's rules:
Hydrogen bond donors <= 5
Hydrogen bond acceptors <= 10
Molecular weight <= 500 daltons
logP <= 5
"""
return (
Lipinski.NumHDonors(mol) <= 5 and
Lipinski.NumHAcceptors(mol) <= 10 and
Descriptors.MolWt(mol) <= 500 and
Crippen.MolLogP(mol) <= 5
)
def reos(mol):
"""
Rapid Elimination Of Swill filter:
Molecular weight between 200 and 500
LogP between -5.0 and +5.0
H-bond donor count between 0 and 5
H-bond acceptor count between 0 and 10
Formal charge between -2 and +2
Rotatable bond count between 0 and 8
Heavy atom count between 15 and 50
"""
return (
200 <= Descriptors.MolWt(mol) <= 500 and
-5.0 <= Crippen.MolLogP(mol) <= 5.0 and
0 <= Lipinski.NumHDonors(mol) <= 5 and
0 <= Lipinski.NumHAcceptors(mol) <= 10 and
-2 <= rdmolops.GetFormalCharge(mol) <= 2 and
0 <= rdMolDescriptors.CalcNumRotatableBonds(mol) <= 8 and
15 <= rdMolDescriptors.CalcNumHeavyAtoms(mol) <= 50
)
def ghose(mol):
"""
Ghose drug like filter:
Molecular weight between 160 and 480
LogP between -0.4 and +5.6
Atom count between 20 and 70
Molar refractivity between 40 and 130
"""
return (
160 <= Descriptors.MolWt(mol) <= 480 and
-0.4 <= Crippen.MolLogP(mol) <= 5.6 and
20 <= rdMolDescriptors.CalcNumAtoms(mol) <= 70 and
40 <= Crippen.MolMR(mol) <= 130
)
def veber(mol):
"""
The Veber filter is a rule of thumb filter for orally active drugs described in
Veber et al., J Med Chem. 2002; 45(12): 2615-23.:
Rotatable bonds <= 10
Topological polar surface area <= 140
"""
return (
rdMolDescriptors.CalcNumRotatableBonds(mol) <= 10 and
rdMolDescriptors.CalcTPSA(mol) <= 140
)
def rule_of_three(mol):
"""
Rule of Three filter (Congreve et al., Drug Discov. Today. 8 (19): 876–7, (2003).):
Molecular weight <= 300
LogP <= 3
H-bond donor <= 3
H-bond acceptor count <= 3
Rotatable bond count <= 3
"""
return (
Descriptors.MolWt(mol) <= 300 and
Crippen.MolLogP(mol) <= 3 and
Lipinski.NumHDonors(mol) <= 3 and
Lipinski.NumHAcceptors(mol) <= 3 and
rdMolDescriptors.CalcNumRotatableBonds(mol) <= 3
)
@cache
def load_smarts_patterns(smarts_path):
# Load the CSV file containing SMARTS patterns
smarts_df = pd.read_csv(Path(smarts_path))
# Convert all SMARTS patterns to molecules
smarts_mols = [Chem.MolFromSmarts(smarts) for smarts in smarts_df['smarts']]
return smarts_mols
def smarts_filter(mol, smarts_mols):
for smarts_mol in smarts_mols:
if smarts_mol is not None and mol.HasSubstructMatch(smarts_mol):
return False
return True
def pains(mol):
smarts_mols = load_smarts_patterns("data/filters/pains.csv")
return smarts_filter(mol, smarts_mols)
def mlsmr(mol):
smarts_mols = load_smarts_patterns("data/filters/mlsmr.csv")
return smarts_filter(mol, smarts_mols)
def dundee(mol):
smarts_mols = load_smarts_patterns("data/filters/dundee.csv")
return smarts_filter(mol, smarts_mols)
def glaxo(mol):
smarts_mols = load_smarts_patterns("data/filters/glaxo.csv")
return smarts_filter(mol, smarts_mols)
def bms(mol):
smarts_mols = load_smarts_patterns("data/filters/bms.csv")
return smarts_filter(mol, smarts_mols)
SCORE_MAP = {
'Synthetic Accessibility': sascorer.calculateScore,
'LogP': Crippen.MolLogP,
'Molecular Weight': Descriptors.MolWt,
'Number of Atoms': rdMolDescriptors.CalcNumAtoms,
'Number of Heavy Atoms': rdMolDescriptors.CalcNumHeavyAtoms,
'Molar Refractivity': Crippen.MolMR,
'H-Bond Donor Count': Lipinski.NumHDonors,
'H-Bond Acceptor Count': Lipinski.NumHAcceptors,
'Rotatable Bond Count': rdMolDescriptors.CalcNumRotatableBonds,
'Topological Polar Surface Area': rdMolDescriptors.CalcTPSA,
}
FILTER_MAP = {
# TODO support number_of_violations
'REOS': reos,
"Lipinski's Rule of Five": lipinski,
'Ghose': ghose,
'Rule of Three': rule_of_three,
'Veber': veber,
'PAINS': pains,
'MLSMR': mlsmr,
'Dundee': dundee,
'Glaxo': glaxo,
'BMS': bms,
}
def get_timezone_by_ip(ip):
try:
data = requests.get(f'https://worldtimeapi.org/api/ip/{ip}').json()
return data['timezone']
except Exception:
return 'UTC'
def ts_to_str(timestamp, timezone):
# Create a timezone-aware datetime object from the UNIX timestamp
dt = datetime.fromtimestamp(timestamp, pytz.utc)
# Convert the timezone-aware datetime object to the target timezone
target_timezone = pytz.timezone(timezone)
localized_dt = dt.astimezone(target_timezone)
# Format the datetime object to the specified string format
return localized_dt.strftime('%Y-%m-%d %H:%M:%S (%Z%z)')
def send_email(job_info):
if job_info.get('email'):
try:
email_info = job_info.copy()
email_serv = os.getenv('EMAIL_SERV')
email_port = os.getenv('EMAIL_PORT')
email_addr = os.getenv('EMAIL_ADDR')
email_pass = os.getenv('EMAIL_PASS')
email_form = os.getenv('EMAIL_FORM')
email_subj = os.getenv('EMAIL_SUBJ')
for key, value in email_info.items():
if key.endswith("time") and value:
email_info[key] = ts_to_str(value, get_timezone_by_ip(email_info['ip']))
server = smtplib.SMTP(email_serv, int(email_port))
# server.starttls()
server.login(email_addr, email_pass)
msg = MIMEMultipart("alternative")
msg["From"] = email_addr
msg["To"] = email_info['email']
msg["Subject"] = email_subj.format(**email_info)
msg["Date"] = formatdate(localtime=True)
msg["Message-ID"] = make_msgid()
msg.attach(MIMEText(markdown(email_form.format(**email_info)), 'html'))
msg.attach(MIMEText(email_form.format(**email_info), 'plain'))
server.sendmail(email_addr, email_info['email'], msg.as_string())
server.quit()
gr.Info('Email notification sent.')
except Exception as e:
gr.Warning('Failed to send email notification due to error: ' + str(e))
def read_molecule(path):
if path.endswith('.pdb'):
return Chem.MolFromPDBFile(path, sanitize=False, removeHs=True)
if path.endswith('.pdr'):
return open(path, 'r').read()
elif path.endswith('.mol'):
return Chem.MolFromMolFile(path, sanitize=False, removeHs=True)
elif path.endswith('.mol2'):
return Chem.MolFromMol2File(path, sanitize=False, removeHs=True)
elif path.endswith('.sdf'):
return Chem.SDMolSupplier(path, sanitize=False, removeHs=True)[0]
raise Exception('Unknown file extension')
def read_molecule_file(in_file, allowed_extentions):
if isinstance(in_file, str):
path = in_file
else:
path = in_file.name
extension = path.split('.')[-1]
if extension not in allowed_extentions:
msg = static.INVALID_FORMAT_MSG.format(extension=extension)
return None, None, msg
try:
mol = read_molecule(path)
except Exception as e:
e = str(e).replace('\'', '')
msg = static.ERROR_FORMAT_MSG.format(message=e)
return None, None, msg
if extension in 'pdb':
content = Chem.MolToPDBBlock(mol)
elif extension in ['mol', 'mol2', 'sdf']:
content = Chem.MolToMolBlock(mol, kekulize=False)
extension = 'mol'
else:
raise NotImplementedError
return content, extension, None
# def create_complex_view_html(
# complex_path, pocket_path_dict=None,
# interactive_ligands=True, interactive_pockets=True
# ):
# """Generates HTML for complex visualization."""
# model_i = -1
# viewer_models = ""
# if complex_path:
# complex_data, extension, html = read_molecule_file(complex_path, allowed_extentions=['pdb'])
# viewer_models += f'viewer.addModel(`{complex_data}`, "pdb");'
# model_i += 1
# viewer_models += f"viewer.getModel({model_i}).setStyle({{ hetflag: false }}, proteinStyle);"
# viewer_models += f"viewer.getModel({model_i}).setStyle({{ hetflag: true }}, ligandStyle);"
# if interactive_ligands:
# # return ligand residue info when the ligand is clicked
# viewer_models += f"""
# let selectedLigand = null;
# viewer.getModel({model_i}).setClickable(
# {{ hetflag: true, byres: true }},
# true,
# function (_atom, _viewer, _event, _container) {{
# let currentLigand = {{ resn: _atom.resn, chain: _atom.chain, resi: _atom.resi }};
#
# if (selectedLigand === currentLigand) {{
# // Deselect ligand
# selectedLigand = null;
# _viewer.setStyle(
# {{ resn: _atom.resn, chain: _atom.chain, resi: _atom.resi }},
# ligandStyle
# );
# console.log("Deselected Residue:", currentLigand);
# window.parent.postMessage({{
# name: "ligand_selection",
# data: {{ residue: currentLigand, add: false }}
# }}, "*");
# }} else {{
# // Select ligand and deselect previous
# if (selectedLigand) {{
# _viewer.setStyle(
# {{
# resn: selectedLigand.resn,
# chain: selectedLigand.chain,
# resi: selectedLigand.resi
# }},
# ligandStyle
# );
# }}
# selectedLigand = currentLigand;
# _viewer.setStyle(
# {{ resn: _atom.resn, chain: _atom.chain, resi: _atom.resi }},
# {{ stick: {{ color: "red", radius: 0.4}} }}
# );
# console.log("Selected Residue:", currentLigand);
# window.parent.postMessage({{
# name: "ligand_selection",
# data: {{ residue: currentLigand, add: true }}
# }}, "*");
# }}
# _viewer.render();
# }}
# );
# """
# if pocket_path_dict:
# pocket_data_dict = {k: open(v, 'r').read() for k, v in pocket_path_dict.items()}
# for pocket_name, pocket_data in pocket_data_dict.items():
# viewer_models += f'viewer.addModel(`{pocket_data}`, "pqr");'
# model_i += 1
# viewer_models += f'viewer.getModel({model_i}).setStyle(pocketStyle);'
# if interactive_pockets:
# # return the pocket name when the pocket is clicked
# viewer_models += f"""
# let selectedPocket = null;
# viewer.getModel({model_i}).setClickable(
# {{ byres: true }},
# true,
# function (_atom, _viewer, _event, _container) {{
# let currentPocket = "{pocket_name}";
#
# if (selectedPocket == currentPocket) {{
# // Deselect pocket
# selectedPocket = null;
# _viewer.getModel({model_i}).setStyle( pocketStyle );
# console.log("Deselected Pocket:", currentPocket);
# window.parent.postMessage({{
# name: "pocket_selection",
# data: {{ pocket: currentPocket, add: false }}
# }}, "*");
# }} else {{
# // Select pocket and deselect previous
# if (selectedPocket) {{
# _viewer.getModel(selectedPocket).setStyle( pocketStyle );
# }}
# selectedPocket = currentPocket;
# _viewer.getModel({model_i}).setStyle(
# {{ sphere: {{ color: "red", opacity: 0.9}} }}
# );
# console.log("Selected Pocket:", currentPocket);
# window.parent.postMessage({{
# name: "pocket_selection",
# data: {{ pocket: currentPocket, add: true }}
# }}, "*");
# }}
# _viewer.render();
# }}
# );
# """
#
# html = static.COMPLEX_RENDERING_TEMPLATE.format(viewer_models=viewer_models)
# return static.IFRAME_TEMPLATE.format(html=html)
def prepare_df_for_table(result_df):
result_df.dropna(subset=['mol'], inplace=True)
rdDepictor.SetPreferCoordGen(True)
draw_opts = Draw.rdMolDraw2D.MolDrawOptions()
draw_opts.clearBackground = False
draw_opts.bondLineWidth = 0.5
draw_opts.explicitMethyl = True
draw_opts.singleColourWedgeBonds = True
draw_opts.addStereoAnnotation = False
draw_opts.useCDKAtomPalette()
def draw_mol(mol):
# Create a new drawer instance for each molecule (for efficiency)
drawer = Draw.MolDraw2DSVG(90, 56)
drawer.SetDrawOptions(draw_opts)
# Draw the molecule and return the SVG as a URI
drawer.DrawMolecule(mol)
drawer.FinishDrawing()
return urllib.parse.quote(drawer.GetDrawingText())
# Convert to URI-formatted inline SVG
result_df['Compound'] = result_df['mol'].apply(draw_mol)
return result_df
def create_result_table_html(summary_df, result_info=None, opts=(), progress=gr.Progress(track_tqdm=True)):
html_df = summary_df.copy().drop(columns=['mol'])
html_df.rename(columns=COL_ALIASES, inplace=True)
if result_info:
output_dir = Path(result_info['output_dir'])
job_type = result_info['type']
html_df['Pose'] = html_df['Pose'].apply(lambda x: str(output_dir / job_type / x))
hidden_cols = [col for col in html_df.columns if col.endswith('_path')]
rightmost_cols = ['Complex Name', 'Fragment SMILES', 'Compound SMILES']
col_order = ([col for col in html_df.columns if col not in rightmost_cols] +
[col for col in html_df.columns if col in rightmost_cols])
html_df = html_df[col_order]
html_df.index.name = 'Index'
# if 'Scaffold' in html_df.columns and 'Exclude Scaffold Graph' not in opts:
# html_df['Scaffold'] = html_df['Scaffold'].parallel_apply(
# lambda x: PandasTools.PrintAsImageString(x) if not pd.isna(x) else x)
# else:
# html_df.drop(['Scaffold'], axis=1, inplace=True)
num_cols = html_df.select_dtypes('number').columns
num_col_colors = sns.color_palette('husl', len(num_cols))
bool_cols = html_df.select_dtypes(bool).columns
image_zoom_formatter = HTMLTemplateFormatter(
template='<img src="data:image/svg+xml,<%= value %>" alt="Molecule" class="zoom-img">'
)
bool_formatters = {col: BooleanFormatter() for col in bool_cols}
float_formatters = {col: NumberFormatter(format='0.000') for col in html_df.select_dtypes('floating').columns}
other_formatters = {
'Compound': image_zoom_formatter,
# 'Scaffold': image_zoom_formatter,
'Pose': {'type': 'molDisplayButtonFormatter'},
}
formatters = {**bool_formatters, **float_formatters, **other_formatters}
# html = df.to_html(file)
# return html
static_url = "gradio_api/file=app/static/"
pn.extension(
design='material',
css_files=[
static_url + 'panel.css'
],
js_files={
'panel_custom': static_url + 'panel.js',
},
)
report_table = pn.widgets.Tabulator(
html_df, formatters=formatters,
frozen_columns=['Index', 'Pose', 'Compound ID', 'Compound'],
hidden_columns=hidden_cols,
sizing_mode='stretch_both',
disabled=True, selectable=False,
pagination='local',
configuration={
'rowHeight': 60,
},
)
for i, col in enumerate(num_cols):
cmap = sns.light_palette(num_col_colors[i], as_cmap=True)
cmap.set_bad(color='white')
report_table.style.background_gradient(
subset=html_df.columns == col, cmap=cmap)
# TODO change this to use commonn substructures
# pie_charts = {}
# for y in html_df.columns.intersection(['Interaction Probability', 'Binding Affinity (IC50 [nM])']):
# for category in categories:
# pie_charts[y][category] = []
# for k in [10, 30, 100]:
# if k < len(html_df):
# pie_charts[y][category].append(create_pie_chart(html_df, category=category, value=y, top_k=k))
# else:
# pie_charts[y][category].append(create_pie_chart(html_df, category=category, value=y, top_k=len(html_df)))
# break
# # Add 'All' tab regardless of the prediction dataset size
# # pie_charts[y].append(create_pie_chart(html_df, category=category, value=y, top_k=len(html_df)))
#
# # Remove key-value pairs with an empty list
# pie_charts[y] = {k: v for k, v in pie_charts[y].items() if any(v)}
# pie_charts = {k: v for k, v in pie_charts.items() if any(v)}
# stats_pane = pn.Column()
# if pie_charts:
# for score_name, figure_dict in pie_charts.items():
# score_row = pn.Row()
# for category, figure_list in figure_dict.items():
# score_row.append(
# pn.Column(f'### {category} by Top {score_name}', pn.Tabs(*figure_list, tabs_location='above')),
# # pn.Card(pn.Row(v), title=f'{category} by Top {k}')
# )
# stats_pane.append(
# score_row
# )
#
# if stats_pane:
# template.main.append(
# pn.Card(stats_pane, sizing_mode='stretch_width', title='Summary Statistics', margin=10)
# )
if result_info:
table_title = (f"{job_type.title()} Results "
f"({'No Linkable Pairs' if job_type != 'linking' else 'Generated Molecules'})")
report = pn.Column(pn.Accordion(
(table_title, report_table),
toggle=True, margin=5, active=[0]
))
aspect_ratio = '1.090 / 1'
else:
report = report_table
aspect_ratio = '1.618 / 1'
with tempfile.TemporaryDirectory() as tmpdir:
file = Path(tmpdir) / 'report.html'
report.save(file)
# iframe_html = static.IFRAME_LINK_TEMPLATE.format(src="gradio_api/file=" + str(file))
html_str = file.read_text() # .replace('\'', '\"')
iframe_html = static.IFRAME_TEMPLATE.format(srcdoc=html.escape(html_str), aspect_ratio=aspect_ratio)
return iframe_html
def download_file(url):
"""Downloads a small file to a temporary location, preserving its filename."""
response = requests.get(url)
if response.status_code == 404:
raise ValueError('No record found for the provided PDB ID.')
response.raise_for_status()
filename = Path(url).name
temp_dir = Path(tempfile.gettempdir()) / 'gradio'
temp_path = temp_dir / filename
temp_path.write_bytes(response.content)
return str(temp_path)
def uniprot_to_pdb(uniprot_id):
"""Queries the RCSB PDB API to find PDB entities associated with a UniProt ID."""
base_url = "https://search.rcsb.org/rcsbsearch/v2/query"
query_payload = {
"query": {
"type": "group",
"logical_operator": "and",
"nodes": [
{
"type": "terminal",
"service": "text",
"parameters": {
"operator": "exact_match",
"value": uniprot_id,
"attribute": "rcsb_polymer_entity_container_identifiers.reference_sequence_identifiers.database_accession"
}
},
{
"type": "terminal",
"service": "text",
"parameters": {
"operator": "exact_match",
"value": "UniProt",
"attribute": "rcsb_polymer_entity_container_identifiers.reference_sequence_identifiers.database_name"
}
}
]
},
"return_type": "entry"
}
try:
# Send POST request with JSON payload
response = requests.post(base_url, json=query_payload)
response.raise_for_status()
data = response.json()
return [entry["identifier"] for entry in data.get("result_set", [])]
except Exception as e:
return []
def fasta_to_pdb(fasta_sequence):
"""Queries the RCSB PDB API to find PDB IDs associated with a FASTA sequence."""
base_url = "https://search.rcsb.org/rcsbsearch/v2/query"
query_payload = {
"query": {
"type": "terminal",
"service": "sequence",
"parameters": {
"evalue_cutoff": 1,
"identity_cutoff": 0.9,
"sequence_type": "protein",
"value": fasta_sequence
}
},
"request_options": {
"scoring_strategy": "sequence"
},
"return_type": "entry"
}
try:
# Send POST request with JSON payload
response = requests.post(base_url, json=query_payload)
response.raise_for_status()
data = response.json()
return [entry["identifier"] for entry in data.get("result_set", [])]
except Exception as e:
return []