Spaces:
Running
Running
# Copyright (c) Meta Platforms, Inc. and affiliates. | |
# All rights reserved. | |
# | |
# This source code is licensed under the BSD-style license found in the | |
# LICENSE file in the root directory of this source tree. | |
import unittest | |
import torch | |
from pytorch3d.ops.interp_face_attrs import ( | |
interpolate_face_attributes, | |
interpolate_face_attributes_python, | |
) | |
from pytorch3d.renderer.mesh import TexturesVertex | |
from pytorch3d.renderer.mesh.rasterizer import Fragments | |
from pytorch3d.structures import Meshes | |
from .common_testing import get_random_cuda_device, TestCaseMixin | |
class TestInterpolateFaceAttributes(TestCaseMixin, unittest.TestCase): | |
def _test_interp_face_attrs(self, interp_fun, device): | |
pix_to_face = [0, 2, -1, 0, 1, -1] | |
barycentric_coords = [ | |
[1.0, 0.0, 0.0], | |
[0.0, 1.0, 0.0], | |
[0.0, 0.0, 1.0], | |
[0.5, 0.5, 0.0], | |
[0.8, 0.0, 0.2], | |
[0.25, 0.5, 0.25], | |
] | |
face_attrs = [ | |
[[1, 2], [3, 4], [5, 6]], | |
[[7, 8], [9, 10], [11, 12]], | |
[[13, 14], [15, 16], [17, 18]], | |
] | |
pix_attrs = [ | |
[1, 2], | |
[15, 16], | |
[0, 0], | |
[2, 3], | |
[0.8 * 7 + 0.2 * 11, 0.8 * 8 + 0.2 * 12], | |
[0, 0], | |
] | |
N, H, W, K, D = 1, 2, 1, 3, 2 | |
pix_to_face = torch.tensor(pix_to_face, dtype=torch.int64, device=device) | |
pix_to_face = pix_to_face.view(N, H, W, K) | |
barycentric_coords = torch.tensor( | |
barycentric_coords, dtype=torch.float32, device=device | |
) | |
barycentric_coords = barycentric_coords.view(N, H, W, K, 3) | |
face_attrs = torch.tensor(face_attrs, dtype=torch.float32, device=device) | |
pix_attrs = torch.tensor(pix_attrs, dtype=torch.float32, device=device) | |
pix_attrs = pix_attrs.view(N, H, W, K, D) | |
args = (pix_to_face, barycentric_coords, face_attrs) | |
pix_attrs_actual = interp_fun(*args) | |
self.assertClose(pix_attrs_actual, pix_attrs) | |
def test_python(self): | |
device = torch.device("cuda:0") | |
self._test_interp_face_attrs(interpolate_face_attributes_python, device) | |
def test_cuda(self): | |
device = torch.device("cuda:0") | |
self._test_interp_face_attrs(interpolate_face_attributes, device) | |
def test_python_vs_cuda(self): | |
N, H, W, K = 2, 32, 32, 5 | |
F = 1000 | |
D = 3 | |
device = get_random_cuda_device() | |
torch.manual_seed(598) | |
pix_to_face = torch.randint(-F, F, (N, H, W, K), device=device) | |
barycentric_coords = torch.randn( | |
N, H, W, K, 3, device=device, requires_grad=True | |
) | |
face_attrs = torch.randn(F, 3, D, device=device, requires_grad=True) | |
grad_pix_attrs = torch.randn(N, H, W, K, D, device=device) | |
args = (pix_to_face, barycentric_coords, face_attrs) | |
# Run the python version | |
pix_attrs_py = interpolate_face_attributes_python(*args) | |
pix_attrs_py.backward(gradient=grad_pix_attrs) | |
grad_bary_py = barycentric_coords.grad.clone() | |
grad_face_attrs_py = face_attrs.grad.clone() | |
# Clear gradients | |
barycentric_coords.grad.zero_() | |
face_attrs.grad.zero_() | |
# Run the CUDA version | |
pix_attrs_cu = interpolate_face_attributes(*args) | |
pix_attrs_cu.backward(gradient=grad_pix_attrs) | |
grad_bary_cu = barycentric_coords.grad.clone() | |
grad_face_attrs_cu = face_attrs.grad.clone() | |
# Check they are the same | |
self.assertClose(pix_attrs_py, pix_attrs_cu, rtol=2e-3) | |
self.assertClose(grad_bary_py, grad_bary_cu, rtol=1e-4) | |
self.assertClose(grad_face_attrs_py, grad_face_attrs_cu, rtol=1e-3) | |
def test_interpolate_attributes(self): | |
verts = torch.randn((4, 3), dtype=torch.float32) | |
faces = torch.tensor([[2, 1, 0], [3, 1, 0]], dtype=torch.int64) | |
vert_tex = torch.tensor( | |
[[0, 1, 0], [0, 1, 1], [1, 1, 0], [1, 1, 1]], dtype=torch.float32 | |
) | |
tex = TexturesVertex(verts_features=vert_tex[None, :]) | |
mesh = Meshes(verts=[verts], faces=[faces], textures=tex) | |
pix_to_face = torch.tensor([0, 1], dtype=torch.int64).view(1, 1, 1, 2) | |
barycentric_coords = torch.tensor( | |
[[0.5, 0.3, 0.2], [0.3, 0.6, 0.1]], dtype=torch.float32 | |
).view(1, 1, 1, 2, -1) | |
expected_vals = torch.tensor( | |
[[0.5, 1.0, 0.3], [0.3, 1.0, 0.9]], dtype=torch.float32 | |
).view(1, 1, 1, 2, -1) | |
fragments = Fragments( | |
pix_to_face=pix_to_face, | |
bary_coords=barycentric_coords, | |
zbuf=torch.ones_like(pix_to_face), | |
dists=torch.ones_like(pix_to_face), | |
) | |
verts_features_packed = mesh.textures.verts_features_packed() | |
faces_verts_features = verts_features_packed[mesh.faces_packed()] | |
texels = interpolate_face_attributes( | |
fragments.pix_to_face, fragments.bary_coords, faces_verts_features | |
) | |
self.assertTrue(torch.allclose(texels, expected_vals[None, :])) | |
def test_interpolate_attributes_grad(self): | |
verts = torch.randn((4, 3), dtype=torch.float32) | |
faces = torch.tensor([[2, 1, 0], [3, 1, 0]], dtype=torch.int64) | |
vert_tex = torch.tensor( | |
[[0, 1, 0], [0, 1, 1], [1, 1, 0], [1, 1, 1]], | |
dtype=torch.float32, | |
requires_grad=True, | |
) | |
tex = TexturesVertex(verts_features=vert_tex[None, :]) | |
mesh = Meshes(verts=[verts], faces=[faces], textures=tex) | |
pix_to_face = torch.tensor([0, 1], dtype=torch.int64).view(1, 1, 1, 2) | |
barycentric_coords = torch.tensor( | |
[[0.5, 0.3, 0.2], [0.3, 0.6, 0.1]], dtype=torch.float32 | |
).view(1, 1, 1, 2, -1) | |
fragments = Fragments( | |
pix_to_face=pix_to_face, | |
bary_coords=barycentric_coords, | |
zbuf=torch.ones_like(pix_to_face), | |
dists=torch.ones_like(pix_to_face), | |
) | |
grad_vert_tex = torch.tensor( | |
[[0.3, 0.3, 0.3], [0.9, 0.9, 0.9], [0.5, 0.5, 0.5], [0.3, 0.3, 0.3]], | |
dtype=torch.float32, | |
) | |
verts_features_packed = mesh.textures.verts_features_packed() | |
faces_verts_features = verts_features_packed[mesh.faces_packed()] | |
texels = interpolate_face_attributes( | |
fragments.pix_to_face, fragments.bary_coords, faces_verts_features | |
) | |
texels.sum().backward() | |
self.assertTrue(hasattr(vert_tex, "grad")) | |
self.assertTrue(torch.allclose(vert_tex.grad, grad_vert_tex[None, :])) | |
def test_interpolate_face_attributes_fail(self): | |
# 1. A face can only have 3 verts | |
# i.e. face_attributes must have shape (F, 3, D) | |
face_attributes = torch.ones(1, 4, 3) | |
pix_to_face = torch.ones((1, 1, 1, 1)) | |
fragments = Fragments( | |
pix_to_face=pix_to_face, | |
bary_coords=pix_to_face[..., None].expand(-1, -1, -1, -1, 3), | |
zbuf=pix_to_face, | |
dists=pix_to_face, | |
) | |
with self.assertRaises(ValueError): | |
interpolate_face_attributes( | |
fragments.pix_to_face, fragments.bary_coords, face_attributes | |
) | |
# 2. pix_to_face must have shape (N, H, W, K) | |
pix_to_face = torch.ones((1, 1, 1, 1, 3)) | |
fragments = Fragments( | |
pix_to_face=pix_to_face, | |
bary_coords=pix_to_face, | |
zbuf=pix_to_face, | |
dists=pix_to_face, | |
) | |
with self.assertRaises(ValueError): | |
interpolate_face_attributes( | |
fragments.pix_to_face, fragments.bary_coords, face_attributes | |
) | |