Spaces:
Runtime error
Runtime error
# Copyright 2020 The HuggingFace Team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
""" | |
Integrations with other Python libraries. | |
""" | |
import functools | |
import importlib.metadata | |
import importlib.util | |
import json | |
import numbers | |
import os | |
import pickle | |
import shutil | |
import sys | |
import tempfile | |
from dataclasses import asdict | |
from pathlib import Path | |
from typing import TYPE_CHECKING, Any, Dict, Literal, Optional, Union | |
import numpy as np | |
from .. import __version__ as version | |
from ..utils import flatten_dict, is_datasets_available, is_pandas_available, is_torch_available, logging | |
logger = logging.get_logger(__name__) | |
if is_torch_available(): | |
import torch | |
# comet_ml requires to be imported before any ML frameworks | |
_has_comet = importlib.util.find_spec("comet_ml") is not None and os.getenv("COMET_MODE", "").upper() != "DISABLED" | |
if _has_comet: | |
try: | |
import comet_ml # noqa: F401 | |
if hasattr(comet_ml, "config") and comet_ml.config.get_config("comet.api_key"): | |
_has_comet = True | |
else: | |
if os.getenv("COMET_MODE", "").upper() != "DISABLED": | |
logger.warning("comet_ml is installed but `COMET_API_KEY` is not set.") | |
_has_comet = False | |
except (ImportError, ValueError): | |
_has_comet = False | |
_has_neptune = ( | |
importlib.util.find_spec("neptune") is not None or importlib.util.find_spec("neptune-client") is not None | |
) | |
if TYPE_CHECKING and _has_neptune: | |
try: | |
_neptune_version = importlib.metadata.version("neptune") | |
logger.info(f"Neptune version {_neptune_version} available.") | |
except importlib.metadata.PackageNotFoundError: | |
try: | |
_neptune_version = importlib.metadata.version("neptune-client") | |
logger.info(f"Neptune-client version {_neptune_version} available.") | |
except importlib.metadata.PackageNotFoundError: | |
_has_neptune = False | |
from ..trainer_callback import ProgressCallback, TrainerCallback # noqa: E402 | |
from ..trainer_utils import PREFIX_CHECKPOINT_DIR, BestRun, IntervalStrategy # noqa: E402 | |
from ..training_args import ParallelMode # noqa: E402 | |
from ..utils import ENV_VARS_TRUE_VALUES, is_torch_tpu_available # noqa: E402 | |
# Integration functions: | |
def is_wandb_available(): | |
# any value of WANDB_DISABLED disables wandb | |
if os.getenv("WANDB_DISABLED", "").upper() in ENV_VARS_TRUE_VALUES: | |
logger.warning( | |
"Using the `WANDB_DISABLED` environment variable is deprecated and will be removed in v5. Use the " | |
"--report_to flag to control the integrations used for logging result (for instance --report_to none)." | |
) | |
return False | |
return importlib.util.find_spec("wandb") is not None | |
def is_clearml_available(): | |
return importlib.util.find_spec("clearml") is not None | |
def is_comet_available(): | |
return _has_comet | |
def is_tensorboard_available(): | |
return importlib.util.find_spec("tensorboard") is not None or importlib.util.find_spec("tensorboardX") is not None | |
def is_optuna_available(): | |
return importlib.util.find_spec("optuna") is not None | |
def is_ray_available(): | |
return importlib.util.find_spec("ray") is not None | |
def is_ray_tune_available(): | |
if not is_ray_available(): | |
return False | |
return importlib.util.find_spec("ray.tune") is not None | |
def is_sigopt_available(): | |
return importlib.util.find_spec("sigopt") is not None | |
def is_azureml_available(): | |
if importlib.util.find_spec("azureml") is None: | |
return False | |
if importlib.util.find_spec("azureml.core") is None: | |
return False | |
return importlib.util.find_spec("azureml.core.run") is not None | |
def is_mlflow_available(): | |
if os.getenv("DISABLE_MLFLOW_INTEGRATION", "FALSE").upper() == "TRUE": | |
return False | |
return importlib.util.find_spec("mlflow") is not None | |
def is_dagshub_available(): | |
return None not in [importlib.util.find_spec("dagshub"), importlib.util.find_spec("mlflow")] | |
def is_neptune_available(): | |
return _has_neptune | |
def is_codecarbon_available(): | |
return importlib.util.find_spec("codecarbon") is not None | |
def is_flytekit_available(): | |
return importlib.util.find_spec("flytekit") is not None | |
def is_flyte_deck_standard_available(): | |
if not is_flytekit_available(): | |
return False | |
return importlib.util.find_spec("flytekitplugins.deck") is not None | |
def is_dvclive_available(): | |
return importlib.util.find_spec("dvclive") is not None | |
def hp_params(trial): | |
if is_optuna_available(): | |
import optuna | |
if isinstance(trial, optuna.Trial): | |
return trial.params | |
if is_ray_tune_available(): | |
if isinstance(trial, dict): | |
return trial | |
if is_sigopt_available(): | |
if isinstance(trial, dict): | |
return trial | |
if is_wandb_available(): | |
if isinstance(trial, dict): | |
return trial | |
raise RuntimeError(f"Unknown type for trial {trial.__class__}") | |
def run_hp_search_optuna(trainer, n_trials: int, direction: str, **kwargs) -> BestRun: | |
import optuna | |
if trainer.args.process_index == 0: | |
def _objective(trial, checkpoint_dir=None): | |
checkpoint = None | |
if checkpoint_dir: | |
for subdir in os.listdir(checkpoint_dir): | |
if subdir.startswith(PREFIX_CHECKPOINT_DIR): | |
checkpoint = os.path.join(checkpoint_dir, subdir) | |
trainer.objective = None | |
if trainer.args.world_size > 1: | |
if trainer.args.parallel_mode != ParallelMode.DISTRIBUTED: | |
raise RuntimeError("only support DDP optuna HPO for ParallelMode.DISTRIBUTED currently.") | |
trainer._hp_search_setup(trial) | |
torch.distributed.broadcast_object_list(pickle.dumps(trainer.args), src=0) | |
trainer.train(resume_from_checkpoint=checkpoint) | |
else: | |
trainer.train(resume_from_checkpoint=checkpoint, trial=trial) | |
# If there hasn't been any evaluation during the training loop. | |
if getattr(trainer, "objective", None) is None: | |
metrics = trainer.evaluate() | |
trainer.objective = trainer.compute_objective(metrics) | |
return trainer.objective | |
timeout = kwargs.pop("timeout", None) | |
n_jobs = kwargs.pop("n_jobs", 1) | |
directions = direction if isinstance(direction, list) else None | |
direction = None if directions is not None else direction | |
study = optuna.create_study(direction=direction, directions=directions, **kwargs) | |
study.optimize(_objective, n_trials=n_trials, timeout=timeout, n_jobs=n_jobs) | |
if not study._is_multi_objective(): | |
best_trial = study.best_trial | |
return BestRun(str(best_trial.number), best_trial.value, best_trial.params) | |
else: | |
best_trials = study.best_trials | |
return [BestRun(str(best.number), best.values, best.params) for best in best_trials] | |
else: | |
for i in range(n_trials): | |
trainer.objective = None | |
args_main_rank = list(pickle.dumps(trainer.args)) | |
if trainer.args.parallel_mode != ParallelMode.DISTRIBUTED: | |
raise RuntimeError("only support DDP optuna HPO for ParallelMode.DISTRIBUTED currently.") | |
torch.distributed.broadcast_object_list(args_main_rank, src=0) | |
args = pickle.loads(bytes(args_main_rank)) | |
for key, value in asdict(args).items(): | |
if key != "local_rank": | |
setattr(trainer.args, key, value) | |
trainer.train(resume_from_checkpoint=None) | |
# If there hasn't been any evaluation during the training loop. | |
if getattr(trainer, "objective", None) is None: | |
metrics = trainer.evaluate() | |
trainer.objective = trainer.compute_objective(metrics) | |
return None | |
def run_hp_search_ray(trainer, n_trials: int, direction: str, **kwargs) -> BestRun: | |
import ray | |
import ray.train | |
def _objective(trial: dict, local_trainer): | |
try: | |
from transformers.utils.notebook import NotebookProgressCallback | |
if local_trainer.pop_callback(NotebookProgressCallback): | |
local_trainer.add_callback(ProgressCallback) | |
except ModuleNotFoundError: | |
pass | |
local_trainer.objective = None | |
checkpoint = ray.train.get_checkpoint() | |
if checkpoint: | |
# Upon trial resume, the local_trainer's objective gets reset to None. | |
# If `local_trainer.train` is a noop (training has already reached | |
# the target number of epochs/steps), then this would | |
# trigger an unnecessary extra checkpoint at the end of training. | |
# -> Set the objective to a dummy value upon resume as a workaround. | |
local_trainer.objective = "objective" | |
with checkpoint.as_directory() as checkpoint_dir: | |
checkpoint_path = next(Path(checkpoint_dir).glob(f"{PREFIX_CHECKPOINT_DIR}*")).as_posix() | |
local_trainer.train(resume_from_checkpoint=checkpoint_path, trial=trial) | |
else: | |
local_trainer.train(trial=trial) | |
# If there hasn't been any evaluation during the training loop. | |
if getattr(local_trainer, "objective", None) is None: | |
metrics = local_trainer.evaluate() | |
local_trainer.objective = local_trainer.compute_objective(metrics) | |
metrics.update({"objective": local_trainer.objective, "done": True}) | |
with tempfile.TemporaryDirectory() as temp_checkpoint_dir: | |
local_trainer._tune_save_checkpoint(checkpoint_dir=temp_checkpoint_dir) | |
checkpoint = ray.train.Checkpoint.from_directory(temp_checkpoint_dir) | |
ray.train.report(metrics, checkpoint=checkpoint) | |
if not trainer._memory_tracker.skip_memory_metrics: | |
from ..trainer_utils import TrainerMemoryTracker | |
logger.warning( | |
"Memory tracking for your Trainer is currently " | |
"enabled. Automatically disabling the memory tracker " | |
"since the memory tracker is not serializable." | |
) | |
trainer._memory_tracker = TrainerMemoryTracker(skip_memory_metrics=True) | |
# The model and TensorBoard writer do not pickle so we have to remove them (if they exists) | |
# while doing the ray hp search. | |
_tb_writer = trainer.pop_callback(TensorBoardCallback) | |
trainer.model = None | |
# Setup default `resources_per_trial`. | |
if "resources_per_trial" not in kwargs: | |
# Default to 1 CPU and 1 GPU (if applicable) per trial. | |
kwargs["resources_per_trial"] = {"cpu": 1} | |
if trainer.args.n_gpu > 0: | |
kwargs["resources_per_trial"]["gpu"] = 1 | |
resource_msg = "1 CPU" + (" and 1 GPU" if trainer.args.n_gpu > 0 else "") | |
logger.info( | |
"No `resources_per_trial` arg was passed into " | |
"`hyperparameter_search`. Setting it to a default value " | |
f"of {resource_msg} for each trial." | |
) | |
# Make sure each trainer only uses GPUs that were allocated per trial. | |
gpus_per_trial = kwargs["resources_per_trial"].get("gpu", 0) | |
trainer.args._n_gpu = gpus_per_trial | |
# Setup default `progress_reporter`. | |
if "progress_reporter" not in kwargs: | |
from ray.tune import CLIReporter | |
kwargs["progress_reporter"] = CLIReporter(metric_columns=["objective"]) | |
if "scheduler" in kwargs: | |
from ray.tune.schedulers import ASHAScheduler, HyperBandForBOHB, MedianStoppingRule, PopulationBasedTraining | |
# Check for `do_eval` and `eval_during_training` for schedulers that require intermediate reporting. | |
if isinstance( | |
kwargs["scheduler"], (ASHAScheduler, MedianStoppingRule, HyperBandForBOHB, PopulationBasedTraining) | |
) and (not trainer.args.do_eval or trainer.args.evaluation_strategy == IntervalStrategy.NO): | |
raise RuntimeError( | |
"You are using {cls} as a scheduler but you haven't enabled evaluation during training. " | |
"This means your trials will not report intermediate results to Ray Tune, and " | |
"can thus not be stopped early or used to exploit other trials parameters. " | |
"If this is what you want, do not use {cls}. If you would like to use {cls}, " | |
"make sure you pass `do_eval=True` and `evaluation_strategy='steps'` in the " | |
"Trainer `args`.".format(cls=type(kwargs["scheduler"]).__name__) | |
) | |
trainable = ray.tune.with_parameters(_objective, local_trainer=trainer) | |
def dynamic_modules_import_trainable(*args, **kwargs): | |
""" | |
Wrapper around `tune.with_parameters` to ensure datasets_modules are loaded on each Actor. | |
Without this, an ImportError will be thrown. See https://github.com/huggingface/transformers/issues/11565. | |
Assumes that `_objective`, defined above, is a function. | |
""" | |
if is_datasets_available(): | |
import datasets.load | |
dynamic_modules_path = os.path.join(datasets.load.init_dynamic_modules(), "__init__.py") | |
# load dynamic_modules from path | |
spec = importlib.util.spec_from_file_location("datasets_modules", dynamic_modules_path) | |
datasets_modules = importlib.util.module_from_spec(spec) | |
sys.modules[spec.name] = datasets_modules | |
spec.loader.exec_module(datasets_modules) | |
return trainable(*args, **kwargs) | |
# special attr set by tune.with_parameters | |
if hasattr(trainable, "__mixins__"): | |
dynamic_modules_import_trainable.__mixins__ = trainable.__mixins__ | |
analysis = ray.tune.run( | |
dynamic_modules_import_trainable, | |
config=trainer.hp_space(None), | |
num_samples=n_trials, | |
**kwargs, | |
) | |
best_trial = analysis.get_best_trial(metric="objective", mode=direction[:3], scope=trainer.args.ray_scope) | |
best_run = BestRun(best_trial.trial_id, best_trial.last_result["objective"], best_trial.config, analysis) | |
if _tb_writer is not None: | |
trainer.add_callback(_tb_writer) | |
return best_run | |
def run_hp_search_sigopt(trainer, n_trials: int, direction: str, **kwargs) -> BestRun: | |
import sigopt | |
if trainer.args.process_index == 0: | |
if importlib.metadata.version("sigopt") >= "8.0.0": | |
sigopt.set_project("huggingface") | |
experiment = sigopt.create_experiment( | |
name="huggingface-tune", | |
type="offline", | |
parameters=trainer.hp_space(None), | |
metrics=[{"name": "objective", "objective": direction, "strategy": "optimize"}], | |
parallel_bandwidth=1, | |
budget=n_trials, | |
) | |
logger.info(f"created experiment: https://app.sigopt.com/experiment/{experiment.id}") | |
for run in experiment.loop(): | |
with run: | |
trainer.objective = None | |
if trainer.args.world_size > 1: | |
if trainer.args.parallel_mode != ParallelMode.DISTRIBUTED: | |
raise RuntimeError("only support DDP Sigopt HPO for ParallelMode.DISTRIBUTED currently.") | |
trainer._hp_search_setup(run.run) | |
torch.distributed.broadcast_object_list(pickle.dumps(trainer.args), src=0) | |
trainer.train(resume_from_checkpoint=None) | |
else: | |
trainer.train(resume_from_checkpoint=None, trial=run.run) | |
# If there hasn't been any evaluation during the training loop. | |
if getattr(trainer, "objective", None) is None: | |
metrics = trainer.evaluate() | |
trainer.objective = trainer.compute_objective(metrics) | |
run.log_metric("objective", trainer.objective) | |
best = list(experiment.get_best_runs())[0] | |
best_run = BestRun(best.id, best.values["objective"].value, best.assignments) | |
else: | |
from sigopt import Connection | |
conn = Connection() | |
proxies = kwargs.pop("proxies", None) | |
if proxies is not None: | |
conn.set_proxies(proxies) | |
experiment = conn.experiments().create( | |
name="huggingface-tune", | |
parameters=trainer.hp_space(None), | |
metrics=[{"name": "objective", "objective": direction, "strategy": "optimize"}], | |
parallel_bandwidth=1, | |
observation_budget=n_trials, | |
project="huggingface", | |
) | |
logger.info(f"created experiment: https://app.sigopt.com/experiment/{experiment.id}") | |
while experiment.progress.observation_count < experiment.observation_budget: | |
suggestion = conn.experiments(experiment.id).suggestions().create() | |
trainer.objective = None | |
if trainer.args.world_size > 1: | |
if trainer.args.parallel_mode != ParallelMode.DISTRIBUTED: | |
raise RuntimeError("only support DDP Sigopt HPO for ParallelMode.DISTRIBUTED currently.") | |
trainer._hp_search_setup(suggestion) | |
torch.distributed.broadcast_object_list(pickle.dumps(trainer.args), src=0) | |
trainer.train(resume_from_checkpoint=None) | |
else: | |
trainer.train(resume_from_checkpoint=None, trial=suggestion) | |
# If there hasn't been any evaluation during the training loop. | |
if getattr(trainer, "objective", None) is None: | |
metrics = trainer.evaluate() | |
trainer.objective = trainer.compute_objective(metrics) | |
values = [{"name": "objective", "value": trainer.objective}] | |
obs = conn.experiments(experiment.id).observations().create(suggestion=suggestion.id, values=values) | |
logger.info(f"[suggestion_id, observation_id]: [{suggestion.id}, {obs.id}]") | |
experiment = conn.experiments(experiment.id).fetch() | |
best = list(conn.experiments(experiment.id).best_assignments().fetch().iterate_pages())[0] | |
best_run = BestRun(best.id, best.value, best.assignments) | |
return best_run | |
else: | |
for i in range(n_trials): | |
trainer.objective = None | |
args_main_rank = list(pickle.dumps(trainer.args)) | |
if trainer.args.parallel_mode != ParallelMode.DISTRIBUTED: | |
raise RuntimeError("only support DDP Sigopt HPO for ParallelMode.DISTRIBUTED currently.") | |
torch.distributed.broadcast_object_list(args_main_rank, src=0) | |
args = pickle.loads(bytes(args_main_rank)) | |
for key, value in asdict(args).items(): | |
if key != "local_rank": | |
setattr(trainer.args, key, value) | |
trainer.train(resume_from_checkpoint=None) | |
# If there hasn't been any evaluation during the training loop. | |
if getattr(trainer, "objective", None) is None: | |
metrics = trainer.evaluate() | |
trainer.objective = trainer.compute_objective(metrics) | |
return None | |
def run_hp_search_wandb(trainer, n_trials: int, direction: str, **kwargs) -> BestRun: | |
from ..integrations import is_wandb_available | |
if not is_wandb_available(): | |
raise ImportError("This function needs wandb installed: `pip install wandb`") | |
import wandb | |
# add WandbCallback if not already added in trainer callbacks | |
reporting_to_wandb = False | |
for callback in trainer.callback_handler.callbacks: | |
if isinstance(callback, WandbCallback): | |
reporting_to_wandb = True | |
break | |
if not reporting_to_wandb: | |
trainer.add_callback(WandbCallback()) | |
trainer.args.report_to = ["wandb"] | |
best_trial = {"run_id": None, "objective": None, "hyperparameters": None} | |
sweep_id = kwargs.pop("sweep_id", None) | |
project = kwargs.pop("project", None) | |
name = kwargs.pop("name", None) | |
entity = kwargs.pop("entity", None) | |
metric = kwargs.pop("metric", "eval/loss") | |
sweep_config = trainer.hp_space(None) | |
sweep_config["metric"]["goal"] = direction | |
sweep_config["metric"]["name"] = metric | |
if name: | |
sweep_config["name"] = name | |
def _objective(): | |
run = wandb.run if wandb.run else wandb.init() | |
trainer.state.trial_name = run.name | |
run.config.update({"assignments": {}, "metric": metric}) | |
config = wandb.config | |
trainer.objective = None | |
trainer.train(resume_from_checkpoint=None, trial=vars(config)["_items"]) | |
# If there hasn't been any evaluation during the training loop. | |
if getattr(trainer, "objective", None) is None: | |
metrics = trainer.evaluate() | |
trainer.objective = trainer.compute_objective(metrics) | |
format_metrics = rewrite_logs(metrics) | |
if metric not in format_metrics: | |
logger.warning( | |
f"Provided metric {metric} not found. This might result in unexpected sweeps charts. The available" | |
f" metrics are {format_metrics.keys()}" | |
) | |
best_score = False | |
if best_trial["run_id"] is not None: | |
if direction == "minimize": | |
best_score = trainer.objective < best_trial["objective"] | |
elif direction == "maximize": | |
best_score = trainer.objective > best_trial["objective"] | |
if best_score or best_trial["run_id"] is None: | |
best_trial["run_id"] = run.id | |
best_trial["objective"] = trainer.objective | |
best_trial["hyperparameters"] = dict(config) | |
return trainer.objective | |
sweep_id = wandb.sweep(sweep_config, project=project, entity=entity) if not sweep_id else sweep_id | |
logger.info(f"wandb sweep id - {sweep_id}") | |
wandb.agent(sweep_id, function=_objective, count=n_trials) | |
return BestRun(best_trial["run_id"], best_trial["objective"], best_trial["hyperparameters"]) | |
def get_available_reporting_integrations(): | |
integrations = [] | |
if is_azureml_available() and not is_mlflow_available(): | |
integrations.append("azure_ml") | |
if is_comet_available(): | |
integrations.append("comet_ml") | |
if is_dagshub_available(): | |
integrations.append("dagshub") | |
if is_dvclive_available(): | |
integrations.append("dvclive") | |
if is_mlflow_available(): | |
integrations.append("mlflow") | |
if is_neptune_available(): | |
integrations.append("neptune") | |
if is_tensorboard_available(): | |
integrations.append("tensorboard") | |
if is_wandb_available(): | |
integrations.append("wandb") | |
if is_codecarbon_available(): | |
integrations.append("codecarbon") | |
if is_clearml_available(): | |
integrations.append("clearml") | |
return integrations | |
def rewrite_logs(d): | |
new_d = {} | |
eval_prefix = "eval_" | |
eval_prefix_len = len(eval_prefix) | |
test_prefix = "test_" | |
test_prefix_len = len(test_prefix) | |
for k, v in d.items(): | |
if k.startswith(eval_prefix): | |
new_d["eval/" + k[eval_prefix_len:]] = v | |
elif k.startswith(test_prefix): | |
new_d["test/" + k[test_prefix_len:]] = v | |
else: | |
new_d["train/" + k] = v | |
return new_d | |
class TensorBoardCallback(TrainerCallback): | |
""" | |
A [`TrainerCallback`] that sends the logs to [TensorBoard](https://www.tensorflow.org/tensorboard). | |
Args: | |
tb_writer (`SummaryWriter`, *optional*): | |
The writer to use. Will instantiate one if not set. | |
""" | |
def __init__(self, tb_writer=None): | |
has_tensorboard = is_tensorboard_available() | |
if not has_tensorboard: | |
raise RuntimeError( | |
"TensorBoardCallback requires tensorboard to be installed. Either update your PyTorch version or" | |
" install tensorboardX." | |
) | |
if has_tensorboard: | |
try: | |
from torch.utils.tensorboard import SummaryWriter # noqa: F401 | |
self._SummaryWriter = SummaryWriter | |
except ImportError: | |
try: | |
from tensorboardX import SummaryWriter | |
self._SummaryWriter = SummaryWriter | |
except ImportError: | |
self._SummaryWriter = None | |
else: | |
self._SummaryWriter = None | |
self.tb_writer = tb_writer | |
def _init_summary_writer(self, args, log_dir=None): | |
log_dir = log_dir or args.logging_dir | |
if self._SummaryWriter is not None: | |
self.tb_writer = self._SummaryWriter(log_dir=log_dir) | |
def on_train_begin(self, args, state, control, **kwargs): | |
if not state.is_world_process_zero: | |
return | |
log_dir = None | |
if state.is_hyper_param_search: | |
trial_name = state.trial_name | |
if trial_name is not None: | |
log_dir = os.path.join(args.logging_dir, trial_name) | |
if self.tb_writer is None: | |
self._init_summary_writer(args, log_dir) | |
if self.tb_writer is not None: | |
self.tb_writer.add_text("args", args.to_json_string()) | |
if "model" in kwargs: | |
model = kwargs["model"] | |
if hasattr(model, "config") and model.config is not None: | |
model_config_json = model.config.to_json_string() | |
self.tb_writer.add_text("model_config", model_config_json) | |
def on_log(self, args, state, control, logs=None, **kwargs): | |
if not state.is_world_process_zero: | |
return | |
if self.tb_writer is None: | |
self._init_summary_writer(args) | |
if self.tb_writer is not None: | |
logs = rewrite_logs(logs) | |
for k, v in logs.items(): | |
if isinstance(v, (int, float)): | |
self.tb_writer.add_scalar(k, v, state.global_step) | |
else: | |
logger.warning( | |
"Trainer is attempting to log a value of " | |
f'"{v}" of type {type(v)} for key "{k}" as a scalar. ' | |
"This invocation of Tensorboard's writer.add_scalar() " | |
"is incorrect so we dropped this attribute." | |
) | |
self.tb_writer.flush() | |
def on_train_end(self, args, state, control, **kwargs): | |
if self.tb_writer: | |
self.tb_writer.close() | |
self.tb_writer = None | |
class WandbCallback(TrainerCallback): | |
""" | |
A [`TrainerCallback`] that logs metrics, media, model checkpoints to [Weight and Biases](https://www.wandb.com/). | |
""" | |
def __init__(self): | |
has_wandb = is_wandb_available() | |
if not has_wandb: | |
raise RuntimeError("WandbCallback requires wandb to be installed. Run `pip install wandb`.") | |
if has_wandb: | |
import wandb | |
self._wandb = wandb | |
self._initialized = False | |
# log model | |
if os.getenv("WANDB_LOG_MODEL", "FALSE").upper() in ENV_VARS_TRUE_VALUES.union({"TRUE"}): | |
DeprecationWarning( | |
f"Setting `WANDB_LOG_MODEL` as {os.getenv('WANDB_LOG_MODEL')} is deprecated and will be removed in " | |
"version 5 of transformers. Use one of `'end'` or `'checkpoint'` instead." | |
) | |
logger.info(f"Setting `WANDB_LOG_MODEL` from {os.getenv('WANDB_LOG_MODEL')} to `end` instead") | |
self._log_model = "end" | |
else: | |
self._log_model = os.getenv("WANDB_LOG_MODEL", "false").lower() | |
def setup(self, args, state, model, **kwargs): | |
""" | |
Setup the optional Weights & Biases (*wandb*) integration. | |
One can subclass and override this method to customize the setup if needed. Find more information | |
[here](https://docs.wandb.ai/guides/integrations/huggingface). You can also override the following environment | |
variables: | |
Environment: | |
- **WANDB_LOG_MODEL** (`str`, *optional*, defaults to `"false"`): | |
Whether to log model and checkpoints during training. Can be `"end"`, `"checkpoint"` or `"false"`. If set | |
to `"end"`, the model will be uploaded at the end of training. If set to `"checkpoint"`, the checkpoint | |
will be uploaded every `args.save_steps` . If set to `"false"`, the model will not be uploaded. Use along | |
with [`~transformers.TrainingArguments.load_best_model_at_end`] to upload best model. | |
<Deprecated version="5.0"> | |
Setting `WANDB_LOG_MODEL` as `bool` will be deprecated in version 5 of 🤗 Transformers. | |
</Deprecated> | |
- **WANDB_WATCH** (`str`, *optional* defaults to `"false"`): | |
Can be `"gradients"`, `"all"`, `"parameters"`, or `"false"`. Set to `"all"` to log gradients and | |
parameters. | |
- **WANDB_PROJECT** (`str`, *optional*, defaults to `"huggingface"`): | |
Set this to a custom string to store results in a different project. | |
- **WANDB_DISABLED** (`bool`, *optional*, defaults to `False`): | |
Whether to disable wandb entirely. Set `WANDB_DISABLED=true` to disable. | |
""" | |
if self._wandb is None: | |
return | |
self._initialized = True | |
if state.is_world_process_zero: | |
logger.info( | |
'Automatic Weights & Biases logging enabled, to disable set os.environ["WANDB_DISABLED"] = "true"' | |
) | |
combined_dict = {**args.to_dict()} | |
if hasattr(model, "config") and model.config is not None: | |
model_config = model.config.to_dict() | |
combined_dict = {**model_config, **combined_dict} | |
trial_name = state.trial_name | |
init_args = {} | |
if trial_name is not None: | |
init_args["name"] = trial_name | |
init_args["group"] = args.run_name | |
else: | |
if not (args.run_name is None or args.run_name == args.output_dir): | |
init_args["name"] = args.run_name | |
if self._wandb.run is None: | |
self._wandb.init( | |
project=os.getenv("WANDB_PROJECT", "huggingface"), | |
**init_args, | |
) | |
# add config parameters (run may have been created manually) | |
self._wandb.config.update(combined_dict, allow_val_change=True) | |
# define default x-axis (for latest wandb versions) | |
if getattr(self._wandb, "define_metric", None): | |
self._wandb.define_metric("train/global_step") | |
self._wandb.define_metric("*", step_metric="train/global_step", step_sync=True) | |
# keep track of model topology and gradients, unsupported on TPU | |
_watch_model = os.getenv("WANDB_WATCH", "false") | |
if not is_torch_tpu_available() and _watch_model in ("all", "parameters", "gradients"): | |
self._wandb.watch(model, log=_watch_model, log_freq=max(100, state.logging_steps)) | |
self._wandb.run._label(code="transformers_trainer") | |
def on_train_begin(self, args, state, control, model=None, **kwargs): | |
if self._wandb is None: | |
return | |
hp_search = state.is_hyper_param_search | |
if hp_search: | |
self._wandb.finish() | |
self._initialized = False | |
args.run_name = None | |
if not self._initialized: | |
self.setup(args, state, model, **kwargs) | |
def on_train_end(self, args, state, control, model=None, tokenizer=None, **kwargs): | |
if self._wandb is None: | |
return | |
if self._log_model in ("end", "checkpoint") and self._initialized and state.is_world_process_zero: | |
from ..trainer import Trainer | |
fake_trainer = Trainer(args=args, model=model, tokenizer=tokenizer) | |
with tempfile.TemporaryDirectory() as temp_dir: | |
fake_trainer.save_model(temp_dir) | |
metadata = ( | |
{ | |
k: v | |
for k, v in dict(self._wandb.summary).items() | |
if isinstance(v, numbers.Number) and not k.startswith("_") | |
} | |
if not args.load_best_model_at_end | |
else { | |
f"eval/{args.metric_for_best_model}": state.best_metric, | |
"train/total_floss": state.total_flos, | |
} | |
) | |
logger.info("Logging model artifacts. ...") | |
model_name = ( | |
f"model-{self._wandb.run.id}" | |
if (args.run_name is None or args.run_name == args.output_dir) | |
else f"model-{self._wandb.run.name}" | |
) | |
artifact = self._wandb.Artifact(name=model_name, type="model", metadata=metadata) | |
for f in Path(temp_dir).glob("*"): | |
if f.is_file(): | |
with artifact.new_file(f.name, mode="wb") as fa: | |
fa.write(f.read_bytes()) | |
self._wandb.run.log_artifact(artifact) | |
def on_log(self, args, state, control, model=None, logs=None, **kwargs): | |
if self._wandb is None: | |
return | |
if not self._initialized: | |
self.setup(args, state, model) | |
if state.is_world_process_zero: | |
logs = rewrite_logs(logs) | |
self._wandb.log({**logs, "train/global_step": state.global_step}) | |
def on_save(self, args, state, control, **kwargs): | |
if self._log_model == "checkpoint" and self._initialized and state.is_world_process_zero: | |
checkpoint_metadata = { | |
k: v | |
for k, v in dict(self._wandb.summary).items() | |
if isinstance(v, numbers.Number) and not k.startswith("_") | |
} | |
ckpt_dir = f"checkpoint-{state.global_step}" | |
artifact_path = os.path.join(args.output_dir, ckpt_dir) | |
logger.info(f"Logging checkpoint artifacts in {ckpt_dir}. ...") | |
checkpoint_name = ( | |
f"checkpoint-{self._wandb.run.id}" | |
if (args.run_name is None or args.run_name == args.output_dir) | |
else f"checkpoint-{self._wandb.run.name}" | |
) | |
artifact = self._wandb.Artifact(name=checkpoint_name, type="model", metadata=checkpoint_metadata) | |
artifact.add_dir(artifact_path) | |
self._wandb.log_artifact(artifact, aliases=[f"checkpoint-{state.global_step}"]) | |
class CometCallback(TrainerCallback): | |
""" | |
A [`TrainerCallback`] that sends the logs to [Comet ML](https://www.comet.ml/site/). | |
""" | |
def __init__(self): | |
if not _has_comet: | |
raise RuntimeError("CometCallback requires comet-ml to be installed. Run `pip install comet-ml`.") | |
self._initialized = False | |
self._log_assets = False | |
def setup(self, args, state, model): | |
""" | |
Setup the optional Comet.ml integration. | |
Environment: | |
- **COMET_MODE** (`str`, *optional*, defaults to `ONLINE`): | |
Whether to create an online, offline experiment or disable Comet logging. Can be `OFFLINE`, `ONLINE`, or | |
`DISABLED`. | |
- **COMET_PROJECT_NAME** (`str`, *optional*): | |
Comet project name for experiments. | |
- **COMET_OFFLINE_DIRECTORY** (`str`, *optional*): | |
Folder to use for saving offline experiments when `COMET_MODE` is `OFFLINE`. | |
- **COMET_LOG_ASSETS** (`str`, *optional*, defaults to `TRUE`): | |
Whether or not to log training assets (tf event logs, checkpoints, etc), to Comet. Can be `TRUE`, or | |
`FALSE`. | |
For a number of configurable items in the environment, see | |
[here](https://www.comet.ml/docs/python-sdk/advanced/#comet-configuration-variables). | |
""" | |
self._initialized = True | |
log_assets = os.getenv("COMET_LOG_ASSETS", "FALSE").upper() | |
if log_assets in {"TRUE", "1"}: | |
self._log_assets = True | |
if state.is_world_process_zero: | |
comet_mode = os.getenv("COMET_MODE", "ONLINE").upper() | |
experiment = None | |
experiment_kwargs = {"project_name": os.getenv("COMET_PROJECT_NAME", "huggingface")} | |
if comet_mode == "ONLINE": | |
experiment = comet_ml.Experiment(**experiment_kwargs) | |
experiment.log_other("Created from", "transformers") | |
logger.info("Automatic Comet.ml online logging enabled") | |
elif comet_mode == "OFFLINE": | |
experiment_kwargs["offline_directory"] = os.getenv("COMET_OFFLINE_DIRECTORY", "./") | |
experiment = comet_ml.OfflineExperiment(**experiment_kwargs) | |
experiment.log_other("Created from", "transformers") | |
logger.info("Automatic Comet.ml offline logging enabled; use `comet upload` when finished") | |
if experiment is not None: | |
experiment._set_model_graph(model, framework="transformers") | |
experiment._log_parameters(args, prefix="args/", framework="transformers") | |
if hasattr(model, "config"): | |
experiment._log_parameters(model.config, prefix="config/", framework="transformers") | |
def on_train_begin(self, args, state, control, model=None, **kwargs): | |
if not self._initialized: | |
self.setup(args, state, model) | |
def on_log(self, args, state, control, model=None, logs=None, **kwargs): | |
if not self._initialized: | |
self.setup(args, state, model) | |
if state.is_world_process_zero: | |
experiment = comet_ml.config.get_global_experiment() | |
if experiment is not None: | |
experiment._log_metrics(logs, step=state.global_step, epoch=state.epoch, framework="transformers") | |
def on_train_end(self, args, state, control, **kwargs): | |
if self._initialized and state.is_world_process_zero: | |
experiment = comet_ml.config.get_global_experiment() | |
if experiment is not None: | |
if self._log_assets is True: | |
logger.info("Logging checkpoints. This may take time.") | |
experiment.log_asset_folder( | |
args.output_dir, recursive=True, log_file_name=True, step=state.global_step | |
) | |
experiment.end() | |
class AzureMLCallback(TrainerCallback): | |
""" | |
A [`TrainerCallback`] that sends the logs to [AzureML](https://pypi.org/project/azureml-sdk/). | |
""" | |
def __init__(self, azureml_run=None): | |
if not is_azureml_available(): | |
raise RuntimeError("AzureMLCallback requires azureml to be installed. Run `pip install azureml-sdk`.") | |
self.azureml_run = azureml_run | |
def on_init_end(self, args, state, control, **kwargs): | |
from azureml.core.run import Run | |
if self.azureml_run is None and state.is_world_process_zero: | |
self.azureml_run = Run.get_context() | |
def on_log(self, args, state, control, logs=None, **kwargs): | |
if self.azureml_run and state.is_world_process_zero: | |
for k, v in logs.items(): | |
if isinstance(v, (int, float)): | |
self.azureml_run.log(k, v, description=k) | |
class MLflowCallback(TrainerCallback): | |
""" | |
A [`TrainerCallback`] that sends the logs to [MLflow](https://www.mlflow.org/). Can be disabled by setting | |
environment variable `DISABLE_MLFLOW_INTEGRATION = TRUE`. | |
""" | |
def __init__(self): | |
if not is_mlflow_available(): | |
raise RuntimeError("MLflowCallback requires mlflow to be installed. Run `pip install mlflow`.") | |
import mlflow | |
self._MAX_PARAM_VAL_LENGTH = mlflow.utils.validation.MAX_PARAM_VAL_LENGTH | |
self._MAX_PARAMS_TAGS_PER_BATCH = mlflow.utils.validation.MAX_PARAMS_TAGS_PER_BATCH | |
self._initialized = False | |
self._auto_end_run = False | |
self._log_artifacts = False | |
self._ml_flow = mlflow | |
def setup(self, args, state, model): | |
""" | |
Setup the optional MLflow integration. | |
Environment: | |
- **HF_MLFLOW_LOG_ARTIFACTS** (`str`, *optional*): | |
Whether to use MLflow `.log_artifact()` facility to log artifacts. This only makes sense if logging to a | |
remote server, e.g. s3 or GCS. If set to `True` or *1*, will copy each saved checkpoint on each save in | |
[`TrainingArguments`]'s `output_dir` to the local or remote artifact storage. Using it without a remote | |
storage will just copy the files to your artifact location. | |
- **MLFLOW_EXPERIMENT_NAME** (`str`, *optional*, defaults to `None`): | |
Whether to use an MLflow experiment_name under which to launch the run. Default to `None` which will point | |
to the `Default` experiment in MLflow. Otherwise, it is a case sensitive name of the experiment to be | |
activated. If an experiment with this name does not exist, a new experiment with this name is created. | |
- **MLFLOW_TAGS** (`str`, *optional*): | |
A string dump of a dictionary of key/value pair to be added to the MLflow run as tags. Example: | |
`os.environ['MLFLOW_TAGS']='{"release.candidate": "RC1", "release.version": "2.2.0"}'`. | |
- **MLFLOW_NESTED_RUN** (`str`, *optional*): | |
Whether to use MLflow nested runs. If set to `True` or *1*, will create a nested run inside the current | |
run. | |
- **MLFLOW_RUN_ID** (`str`, *optional*): | |
Allow to reattach to an existing run which can be usefull when resuming training from a checkpoint. When | |
`MLFLOW_RUN_ID` environment variable is set, `start_run` attempts to resume a run with the specified run ID | |
and other parameters are ignored. | |
- **MLFLOW_FLATTEN_PARAMS** (`str`, *optional*, defaults to `False`): | |
Whether to flatten the parameters dictionary before logging. | |
""" | |
self._log_artifacts = os.getenv("HF_MLFLOW_LOG_ARTIFACTS", "FALSE").upper() in ENV_VARS_TRUE_VALUES | |
self._nested_run = os.getenv("MLFLOW_NESTED_RUN", "FALSE").upper() in ENV_VARS_TRUE_VALUES | |
self._experiment_name = os.getenv("MLFLOW_EXPERIMENT_NAME", None) | |
self._flatten_params = os.getenv("MLFLOW_FLATTEN_PARAMS", "FALSE").upper() in ENV_VARS_TRUE_VALUES | |
self._run_id = os.getenv("MLFLOW_RUN_ID", None) | |
logger.debug( | |
f"MLflow experiment_name={self._experiment_name}, run_name={args.run_name}, nested={self._nested_run}," | |
f" tags={self._nested_run}" | |
) | |
if state.is_world_process_zero: | |
if self._ml_flow.active_run() is None or self._nested_run or self._run_id: | |
if self._experiment_name: | |
# Use of set_experiment() ensure that Experiment is created if not exists | |
self._ml_flow.set_experiment(self._experiment_name) | |
self._ml_flow.start_run(run_name=args.run_name, nested=self._nested_run) | |
logger.debug(f"MLflow run started with run_id={self._ml_flow.active_run().info.run_id}") | |
self._auto_end_run = True | |
combined_dict = args.to_dict() | |
if hasattr(model, "config") and model.config is not None: | |
model_config = model.config.to_dict() | |
combined_dict = {**model_config, **combined_dict} | |
combined_dict = flatten_dict(combined_dict) if self._flatten_params else combined_dict | |
# remove params that are too long for MLflow | |
for name, value in list(combined_dict.items()): | |
# internally, all values are converted to str in MLflow | |
if len(str(value)) > self._MAX_PARAM_VAL_LENGTH: | |
logger.warning( | |
f'Trainer is attempting to log a value of "{value}" for key "{name}" as a parameter. MLflow\'s' | |
" log_param() only accepts values no longer than 250 characters so we dropped this attribute." | |
" You can use `MLFLOW_FLATTEN_PARAMS` environment variable to flatten the parameters and" | |
" avoid this message." | |
) | |
del combined_dict[name] | |
# MLflow cannot log more than 100 values in one go, so we have to split it | |
combined_dict_items = list(combined_dict.items()) | |
for i in range(0, len(combined_dict_items), self._MAX_PARAMS_TAGS_PER_BATCH): | |
self._ml_flow.log_params(dict(combined_dict_items[i : i + self._MAX_PARAMS_TAGS_PER_BATCH])) | |
mlflow_tags = os.getenv("MLFLOW_TAGS", None) | |
if mlflow_tags: | |
mlflow_tags = json.loads(mlflow_tags) | |
self._ml_flow.set_tags(mlflow_tags) | |
self._initialized = True | |
def on_train_begin(self, args, state, control, model=None, **kwargs): | |
if not self._initialized: | |
self.setup(args, state, model) | |
def on_log(self, args, state, control, logs, model=None, **kwargs): | |
if not self._initialized: | |
self.setup(args, state, model) | |
if state.is_world_process_zero: | |
metrics = {} | |
for k, v in logs.items(): | |
if isinstance(v, (int, float)): | |
metrics[k] = v | |
else: | |
logger.warning( | |
f'Trainer is attempting to log a value of "{v}" of type {type(v)} for key "{k}" as a metric. ' | |
"MLflow's log_metric() only accepts float and int types so we dropped this attribute." | |
) | |
self._ml_flow.log_metrics(metrics=metrics, step=state.global_step) | |
def on_train_end(self, args, state, control, **kwargs): | |
if self._initialized and state.is_world_process_zero: | |
if self._auto_end_run and self._ml_flow.active_run(): | |
self._ml_flow.end_run() | |
def on_save(self, args, state, control, **kwargs): | |
if self._initialized and state.is_world_process_zero and self._log_artifacts: | |
ckpt_dir = f"checkpoint-{state.global_step}" | |
artifact_path = os.path.join(args.output_dir, ckpt_dir) | |
logger.info(f"Logging checkpoint artifacts in {ckpt_dir}. This may take time.") | |
self._ml_flow.pyfunc.log_model( | |
ckpt_dir, | |
artifacts={"model_path": artifact_path}, | |
python_model=self._ml_flow.pyfunc.PythonModel(), | |
) | |
def __del__(self): | |
# if the previous run is not terminated correctly, the fluent API will | |
# not let you start a new run before the previous one is killed | |
if ( | |
self._auto_end_run | |
and callable(getattr(self._ml_flow, "active_run", None)) | |
and self._ml_flow.active_run() is not None | |
): | |
self._ml_flow.end_run() | |
class DagsHubCallback(MLflowCallback): | |
""" | |
A [`TrainerCallback`] that logs to [DagsHub](https://dagshub.com/). Extends [`MLflowCallback`] | |
""" | |
def __init__(self): | |
super().__init__() | |
if not is_dagshub_available(): | |
raise ImportError("DagsHubCallback requires dagshub to be installed. Run `pip install dagshub`.") | |
from dagshub.upload import Repo | |
self.Repo = Repo | |
def setup(self, *args, **kwargs): | |
""" | |
Setup the DagsHub's Logging integration. | |
Environment: | |
- **HF_DAGSHUB_LOG_ARTIFACTS** (`str`, *optional*): | |
Whether to save the data and model artifacts for the experiment. Default to `False`. | |
""" | |
self.log_artifacts = os.getenv("HF_DAGSHUB_LOG_ARTIFACTS", "FALSE").upper() in ENV_VARS_TRUE_VALUES | |
self.name = os.getenv("HF_DAGSHUB_MODEL_NAME") or "main" | |
self.remote = os.getenv("MLFLOW_TRACKING_URI") | |
self.repo = self.Repo( | |
owner=self.remote.split(os.sep)[-2], | |
name=self.remote.split(os.sep)[-1].split(".")[0], | |
branch=os.getenv("BRANCH") or "main", | |
) | |
self.path = Path("artifacts") | |
if self.remote is None: | |
raise RuntimeError( | |
"DagsHubCallback requires the `MLFLOW_TRACKING_URI` environment variable to be set. Did you run" | |
" `dagshub.init()`?" | |
) | |
super().setup(*args, **kwargs) | |
def on_train_end(self, args, state, control, **kwargs): | |
if self.log_artifacts: | |
if getattr(self, "train_dataloader", None): | |
torch.save(self.train_dataloader.dataset, os.path.join(args.output_dir, "dataset.pt")) | |
self.repo.directory(str(self.path)).add_dir(args.output_dir) | |
class NeptuneMissingConfiguration(Exception): | |
def __init__(self): | |
super().__init__( | |
""" | |
------ Unsupported ---- We were not able to create new runs. You provided a custom Neptune run to | |
`NeptuneCallback` with the `run` argument. For the integration to work fully, provide your `api_token` and | |
`project` by saving them as environment variables or passing them to the callback. | |
""" | |
) | |
class NeptuneCallback(TrainerCallback): | |
"""TrainerCallback that sends the logs to [Neptune](https://app.neptune.ai). | |
Args: | |
api_token (`str`, *optional*): Neptune API token obtained upon registration. | |
You can leave this argument out if you have saved your token to the `NEPTUNE_API_TOKEN` environment | |
variable (strongly recommended). See full setup instructions in the | |
[docs](https://docs.neptune.ai/setup/installation). | |
project (`str`, *optional*): Name of an existing Neptune project, in the form "workspace-name/project-name". | |
You can find and copy the name in Neptune from the project settings -> Properties. If None (default), the | |
value of the `NEPTUNE_PROJECT` environment variable is used. | |
name (`str`, *optional*): Custom name for the run. | |
base_namespace (`str`, optional, defaults to "finetuning"): In the Neptune run, the root namespace | |
that will contain all of the metadata logged by the callback. | |
log_parameters (`bool`, *optional*, defaults to `True`): | |
If True, logs all Trainer arguments and model parameters provided by the Trainer. | |
log_checkpoints (`str`, *optional*): If "same", uploads checkpoints whenever they are saved by the Trainer. | |
If "last", uploads only the most recently saved checkpoint. If "best", uploads the best checkpoint (among | |
the ones saved by the Trainer). If `None`, does not upload checkpoints. | |
run (`Run`, *optional*): Pass a Neptune run object if you want to continue logging to an existing run. | |
Read more about resuming runs in the [docs](https://docs.neptune.ai/logging/to_existing_object). | |
**neptune_run_kwargs (*optional*): | |
Additional keyword arguments to be passed directly to the | |
[`neptune.init_run()`](https://docs.neptune.ai/api/neptune#init_run) function when a new run is created. | |
For instructions and examples, see the [Transformers integration | |
guide](https://docs.neptune.ai/integrations/transformers) in the Neptune documentation. | |
""" | |
integration_version_key = "source_code/integrations/transformers" | |
model_parameters_key = "model_parameters" | |
trial_name_key = "trial" | |
trial_params_key = "trial_params" | |
trainer_parameters_key = "trainer_parameters" | |
flat_metrics = {"train/epoch"} | |
def __init__( | |
self, | |
*, | |
api_token: Optional[str] = None, | |
project: Optional[str] = None, | |
name: Optional[str] = None, | |
base_namespace: str = "finetuning", | |
run=None, | |
log_parameters: bool = True, | |
log_checkpoints: Optional[str] = None, | |
**neptune_run_kwargs, | |
): | |
if not is_neptune_available(): | |
raise ValueError( | |
"NeptuneCallback requires the Neptune client library to be installed. " | |
"To install the library, run `pip install neptune`." | |
) | |
try: | |
from neptune import Run | |
from neptune.internal.utils import verify_type | |
except ImportError: | |
from neptune.new.internal.utils import verify_type | |
from neptune.new.metadata_containers.run import Run | |
verify_type("api_token", api_token, (str, type(None))) | |
verify_type("project", project, (str, type(None))) | |
verify_type("name", name, (str, type(None))) | |
verify_type("base_namespace", base_namespace, str) | |
verify_type("run", run, (Run, type(None))) | |
verify_type("log_parameters", log_parameters, bool) | |
verify_type("log_checkpoints", log_checkpoints, (str, type(None))) | |
self._base_namespace_path = base_namespace | |
self._log_parameters = log_parameters | |
self._log_checkpoints = log_checkpoints | |
self._initial_run: Optional[Run] = run | |
self._run = None | |
self._is_monitoring_run = False | |
self._run_id = None | |
self._force_reset_monitoring_run = False | |
self._init_run_kwargs = {"api_token": api_token, "project": project, "name": name, **neptune_run_kwargs} | |
self._volatile_checkpoints_dir = None | |
self._should_upload_checkpoint = self._log_checkpoints is not None | |
self._recent_checkpoint_path = None | |
if self._log_checkpoints in {"last", "best"}: | |
self._target_checkpoints_namespace = f"checkpoints/{self._log_checkpoints}" | |
self._should_clean_recently_uploaded_checkpoint = True | |
else: | |
self._target_checkpoints_namespace = "checkpoints" | |
self._should_clean_recently_uploaded_checkpoint = False | |
def _stop_run_if_exists(self): | |
if self._run: | |
self._run.stop() | |
del self._run | |
self._run = None | |
def _initialize_run(self, **additional_neptune_kwargs): | |
try: | |
from neptune import init_run | |
from neptune.exceptions import NeptuneMissingApiTokenException, NeptuneMissingProjectNameException | |
except ImportError: | |
from neptune.new import init_run | |
from neptune.new.exceptions import NeptuneMissingApiTokenException, NeptuneMissingProjectNameException | |
self._stop_run_if_exists() | |
try: | |
self._run = init_run(**self._init_run_kwargs, **additional_neptune_kwargs) | |
self._run_id = self._run["sys/id"].fetch() | |
except (NeptuneMissingProjectNameException, NeptuneMissingApiTokenException) as e: | |
raise NeptuneMissingConfiguration() from e | |
def _use_initial_run(self): | |
self._run = self._initial_run | |
self._is_monitoring_run = True | |
self._run_id = self._run["sys/id"].fetch() | |
self._initial_run = None | |
def _ensure_run_with_monitoring(self): | |
if self._initial_run is not None: | |
self._use_initial_run() | |
else: | |
if not self._force_reset_monitoring_run and self._is_monitoring_run: | |
return | |
if self._run and not self._is_monitoring_run and not self._force_reset_monitoring_run: | |
self._initialize_run(with_id=self._run_id) | |
self._is_monitoring_run = True | |
else: | |
self._initialize_run() | |
self._force_reset_monitoring_run = False | |
def _ensure_at_least_run_without_monitoring(self): | |
if self._initial_run is not None: | |
self._use_initial_run() | |
else: | |
if not self._run: | |
self._initialize_run( | |
with_id=self._run_id, | |
capture_stdout=False, | |
capture_stderr=False, | |
capture_hardware_metrics=False, | |
capture_traceback=False, | |
) | |
self._is_monitoring_run = False | |
def run(self): | |
if self._run is None: | |
self._ensure_at_least_run_without_monitoring() | |
return self._run | |
def _metadata_namespace(self): | |
return self.run[self._base_namespace_path] | |
def _log_integration_version(self): | |
self.run[NeptuneCallback.integration_version_key] = version | |
def _log_trainer_parameters(self, args): | |
self._metadata_namespace[NeptuneCallback.trainer_parameters_key] = args.to_sanitized_dict() | |
def _log_model_parameters(self, model): | |
from neptune.utils import stringify_unsupported | |
if model and hasattr(model, "config") and model.config is not None: | |
self._metadata_namespace[NeptuneCallback.model_parameters_key] = stringify_unsupported( | |
model.config.to_dict() | |
) | |
def _log_hyper_param_search_parameters(self, state): | |
if state and hasattr(state, "trial_name"): | |
self._metadata_namespace[NeptuneCallback.trial_name_key] = state.trial_name | |
if state and hasattr(state, "trial_params") and state.trial_params is not None: | |
self._metadata_namespace[NeptuneCallback.trial_params_key] = state.trial_params | |
def _log_model_checkpoint(self, source_directory: str, checkpoint: str): | |
target_path = relative_path = os.path.join(source_directory, checkpoint) | |
if self._volatile_checkpoints_dir is not None: | |
consistent_checkpoint_path = os.path.join(self._volatile_checkpoints_dir, checkpoint) | |
try: | |
# Remove leading ../ from a relative path. | |
cpkt_path = relative_path.replace("..", "").lstrip(os.path.sep) | |
copy_path = os.path.join(consistent_checkpoint_path, cpkt_path) | |
shutil.copytree(relative_path, copy_path) | |
target_path = consistent_checkpoint_path | |
except IOError as e: | |
logger.warning( | |
"NeptuneCallback was unable to made a copy of checkpoint due to I/O exception: '{}'. " | |
"Could fail trying to upload.".format(e) | |
) | |
self._metadata_namespace[self._target_checkpoints_namespace].upload_files(target_path) | |
if self._should_clean_recently_uploaded_checkpoint and self._recent_checkpoint_path is not None: | |
self._metadata_namespace[self._target_checkpoints_namespace].delete_files(self._recent_checkpoint_path) | |
self._recent_checkpoint_path = relative_path | |
def on_init_end(self, args, state, control, **kwargs): | |
self._volatile_checkpoints_dir = None | |
if self._log_checkpoints and (args.overwrite_output_dir or args.save_total_limit is not None): | |
self._volatile_checkpoints_dir = tempfile.TemporaryDirectory().name | |
if self._log_checkpoints == "best" and not args.load_best_model_at_end: | |
raise ValueError("To save the best model checkpoint, the load_best_model_at_end argument must be enabled.") | |
def on_train_begin(self, args, state, control, model=None, **kwargs): | |
if not state.is_world_process_zero: | |
return | |
self._ensure_run_with_monitoring() | |
self._force_reset_monitoring_run = True | |
self._log_integration_version() | |
if self._log_parameters: | |
self._log_trainer_parameters(args) | |
self._log_model_parameters(model) | |
if state.is_hyper_param_search: | |
self._log_hyper_param_search_parameters(state) | |
def on_train_end(self, args, state, control, **kwargs): | |
self._stop_run_if_exists() | |
def __del__(self): | |
if self._volatile_checkpoints_dir is not None: | |
shutil.rmtree(self._volatile_checkpoints_dir, ignore_errors=True) | |
self._stop_run_if_exists() | |
def on_save(self, args, state, control, **kwargs): | |
if self._should_upload_checkpoint: | |
self._log_model_checkpoint(args.output_dir, f"checkpoint-{state.global_step}") | |
def on_evaluate(self, args, state, control, metrics=None, **kwargs): | |
if self._log_checkpoints == "best": | |
best_metric_name = args.metric_for_best_model | |
if not best_metric_name.startswith("eval_"): | |
best_metric_name = f"eval_{best_metric_name}" | |
metric_value = metrics.get(best_metric_name) | |
operator = np.greater if args.greater_is_better else np.less | |
self._should_upload_checkpoint = state.best_metric is None or operator(metric_value, state.best_metric) | |
def get_run(cls, trainer): | |
for callback in trainer.callback_handler.callbacks: | |
if isinstance(callback, cls): | |
return callback.run | |
raise Exception("The trainer doesn't have a NeptuneCallback configured.") | |
def on_log(self, args, state, control, logs: Optional[Dict[str, float]] = None, **kwargs): | |
if not state.is_world_process_zero: | |
return | |
if logs is not None: | |
for name, value in rewrite_logs(logs).items(): | |
if isinstance(value, (int, float)): | |
if name in NeptuneCallback.flat_metrics: | |
self._metadata_namespace[name] = value | |
else: | |
self._metadata_namespace[name].log(value, step=state.global_step) | |
class CodeCarbonCallback(TrainerCallback): | |
""" | |
A [`TrainerCallback`] that tracks the CO2 emission of training. | |
""" | |
def __init__(self): | |
if not is_codecarbon_available(): | |
raise RuntimeError( | |
"CodeCarbonCallback requires `codecarbon` to be installed. Run `pip install codecarbon`." | |
) | |
import codecarbon | |
self._codecarbon = codecarbon | |
self.tracker = None | |
def on_init_end(self, args, state, control, **kwargs): | |
if self.tracker is None and state.is_local_process_zero: | |
# CodeCarbon will automatically handle environment variables for configuration | |
self.tracker = self._codecarbon.EmissionsTracker(output_dir=args.output_dir) | |
def on_train_begin(self, args, state, control, model=None, **kwargs): | |
if self.tracker and state.is_local_process_zero: | |
self.tracker.start() | |
def on_train_end(self, args, state, control, **kwargs): | |
if self.tracker and state.is_local_process_zero: | |
self.tracker.stop() | |
class ClearMLCallback(TrainerCallback): | |
""" | |
A [`TrainerCallback`] that sends the logs to [ClearML](https://clear.ml/). | |
Environment: | |
- **CLEARML_PROJECT** (`str`, *optional*, defaults to `HuggingFace Transformers`): | |
ClearML project name. | |
- **CLEARML_TASK** (`str`, *optional*, defaults to `Trainer`): | |
ClearML task name. | |
- **CLEARML_LOG_MODEL** (`bool`, *optional*, defaults to `False`): | |
Whether to log models as artifacts during training. | |
""" | |
def __init__(self): | |
if is_clearml_available(): | |
import clearml | |
self._clearml = clearml | |
else: | |
raise RuntimeError("ClearMLCallback requires 'clearml' to be installed. Run `pip install clearml`.") | |
self._initialized = False | |
self._initialized_externally = False | |
self._clearml_task = None | |
self._log_model = os.getenv("CLEARML_LOG_MODEL", "FALSE").upper() in ENV_VARS_TRUE_VALUES.union({"TRUE"}) | |
def setup(self, args, state, model, tokenizer, **kwargs): | |
if self._clearml is None: | |
return | |
if self._initialized: | |
return | |
if state.is_world_process_zero: | |
logger.info("Automatic ClearML logging enabled.") | |
if self._clearml_task is None: | |
# This might happen when running inside of a pipeline, where the task is already initialized | |
# from outside of Hugging Face | |
if self._clearml.Task.current_task(): | |
self._clearml_task = self._clearml.Task.current_task() | |
self._initialized = True | |
self._initialized_externally = True | |
logger.info("External ClearML Task has been connected.") | |
else: | |
self._clearml_task = self._clearml.Task.init( | |
project_name=os.getenv("CLEARML_PROJECT", "HuggingFace Transformers"), | |
task_name=os.getenv("CLEARML_TASK", "Trainer"), | |
auto_connect_frameworks={"tensorboard": False, "pytorch": False}, | |
output_uri=True, | |
) | |
self._initialized = True | |
logger.info("ClearML Task has been initialized.") | |
self._clearml_task.connect(args, "Args") | |
if hasattr(model, "config") and model.config is not None: | |
self._clearml_task.connect(model.config, "Model Configuration") | |
def on_train_begin(self, args, state, control, model=None, tokenizer=None, **kwargs): | |
if self._clearml is None: | |
return | |
if state.is_hyper_param_search: | |
self._initialized = False | |
if not self._initialized: | |
self.setup(args, state, model, tokenizer, **kwargs) | |
def on_train_end(self, args, state, control, model=None, tokenizer=None, metrics=None, logs=None, **kwargs): | |
if self._clearml is None: | |
return | |
if self._clearml_task and state.is_world_process_zero and not self._initialized_externally: | |
# Close ClearML Task at the end end of training | |
self._clearml_task.close() | |
def on_log(self, args, state, control, model=None, tokenizer=None, logs=None, **kwargs): | |
if self._clearml is None: | |
return | |
if not self._initialized: | |
self.setup(args, state, model, tokenizer, **kwargs) | |
if state.is_world_process_zero: | |
eval_prefix = "eval_" | |
eval_prefix_len = len(eval_prefix) | |
test_prefix = "test_" | |
test_prefix_len = len(test_prefix) | |
single_value_scalars = [ | |
"train_runtime", | |
"train_samples_per_second", | |
"train_steps_per_second", | |
"train_loss", | |
"total_flos", | |
"epoch", | |
] | |
for k, v in logs.items(): | |
if isinstance(v, (int, float)): | |
if k in single_value_scalars: | |
self._clearml_task.get_logger().report_single_value(name=k, value=v) | |
elif k.startswith(eval_prefix): | |
self._clearml_task.get_logger().report_scalar( | |
title=k[eval_prefix_len:], series="eval", value=v, iteration=state.global_step | |
) | |
elif k.startswith(test_prefix): | |
self._clearml_task.get_logger().report_scalar( | |
title=k[test_prefix_len:], series="test", value=v, iteration=state.global_step | |
) | |
else: | |
self._clearml_task.get_logger().report_scalar( | |
title=k, series="train", value=v, iteration=state.global_step | |
) | |
else: | |
logger.warning( | |
"Trainer is attempting to log a value of " | |
f'"{v}" of type {type(v)} for key "{k}" as a scalar. ' | |
"This invocation of ClearML logger's report_scalar() " | |
"is incorrect so we dropped this attribute." | |
) | |
def on_save(self, args, state, control, **kwargs): | |
if self._log_model and self._clearml_task and state.is_world_process_zero: | |
ckpt_dir = f"checkpoint-{state.global_step}" | |
artifact_path = os.path.join(args.output_dir, ckpt_dir) | |
logger.info(f"Logging checkpoint artifacts in {ckpt_dir}. This may take time.") | |
self._clearml_task.update_output_model(artifact_path, iteration=state.global_step, auto_delete_file=False) | |
class FlyteCallback(TrainerCallback): | |
"""A [`TrainerCallback`] that sends the logs to [Flyte](https://flyte.org/). | |
NOTE: This callback only works within a Flyte task. | |
Args: | |
save_log_history (`bool`, *optional*, defaults to `True`): | |
When set to True, the training logs are saved as a Flyte Deck. | |
sync_checkpoints (`bool`, *optional*, defaults to `True`): | |
When set to True, checkpoints are synced with Flyte and can be used to resume training in the case of an | |
interruption. | |
Example: | |
```python | |
# Note: This example skips over some setup steps for brevity. | |
from flytekit import current_context, task | |
@task | |
def train_hf_transformer(): | |
cp = current_context().checkpoint | |
trainer = Trainer(..., callbacks=[FlyteCallback()]) | |
output = trainer.train(resume_from_checkpoint=cp.restore()) | |
``` | |
""" | |
def __init__(self, save_log_history: bool = True, sync_checkpoints: bool = True): | |
super().__init__() | |
if not is_flytekit_available(): | |
raise ImportError("FlyteCallback requires flytekit to be installed. Run `pip install flytekit`.") | |
if not is_flyte_deck_standard_available() or not is_pandas_available(): | |
logger.warning( | |
"Syncing log history requires both flytekitplugins-deck-standard and pandas to be installed. " | |
"Run `pip install flytekitplugins-deck-standard pandas` to enable this feature." | |
) | |
save_log_history = False | |
from flytekit import current_context | |
self.cp = current_context().checkpoint | |
self.save_log_history = save_log_history | |
self.sync_checkpoints = sync_checkpoints | |
def on_save(self, args, state, control, **kwargs): | |
if self.sync_checkpoints and state.is_world_process_zero: | |
ckpt_dir = f"checkpoint-{state.global_step}" | |
artifact_path = os.path.join(args.output_dir, ckpt_dir) | |
logger.info(f"Syncing checkpoint in {ckpt_dir} to Flyte. This may take time.") | |
self.cp.save(artifact_path) | |
def on_train_end(self, args, state, control, **kwargs): | |
if self.save_log_history: | |
import pandas as pd | |
from flytekit import Deck | |
from flytekitplugins.deck.renderer import TableRenderer | |
log_history_df = pd.DataFrame(state.log_history) | |
Deck("Log History", TableRenderer().to_html(log_history_df)) | |
class DVCLiveCallback(TrainerCallback): | |
""" | |
A [`TrainerCallback`] that sends the logs to [DVCLive](https://www.dvc.org/doc/dvclive). | |
Use the environment variables below in `setup` to configure the integration. To customize this callback beyond | |
those environment variables, see [here](https://dvc.org/doc/dvclive/ml-frameworks/huggingface). | |
Args: | |
live (`dvclive.Live`, *optional*, defaults to `None`): | |
Optional Live instance. If None, a new instance will be created using **kwargs. | |
log_model (Union[Literal["all"], bool], *optional*, defaults to `None`): | |
Whether to use `dvclive.Live.log_artifact()` to log checkpoints created by [`Trainer`]. If set to `True`, | |
the final checkpoint is logged at the end of training. If set to `"all"`, the entire | |
[`TrainingArguments`]'s `output_dir` is logged at each checkpoint. | |
""" | |
def __init__( | |
self, | |
live: Optional[Any] = None, | |
log_model: Optional[Union[Literal["all"], bool]] = None, | |
**kwargs, | |
): | |
if not is_dvclive_available(): | |
raise RuntimeError("DVCLiveCallback requires dvclive to be installed. Run `pip install dvclive`.") | |
from dvclive import Live | |
self._log_model = log_model | |
self._initialized = False | |
self.live = None | |
if isinstance(live, Live): | |
self.live = live | |
self._initialized = True | |
elif live is not None: | |
raise RuntimeError(f"Found class {live.__class__} for live, expected dvclive.Live") | |
def setup(self, args, state, model): | |
""" | |
Setup the optional DVCLive integration. To customize this callback beyond the environment variables below, see | |
[here](https://dvc.org/doc/dvclive/ml-frameworks/huggingface). | |
Environment: | |
- **HF_DVCLIVE_LOG_MODEL** (`str`, *optional*): | |
Whether to use `dvclive.Live.log_artifact()` to log checkpoints created by [`Trainer`]. If set to `True` or | |
*1*, the final checkpoint is logged at the end of training. If set to `all`, the entire | |
[`TrainingArguments`]'s `output_dir` is logged at each checkpoint. | |
""" | |
from dvclive import Live | |
self._initalized = True | |
if self._log_model is not None: | |
log_model_env = os.getenv("HF_DVCLIVE_LOG_MODEL") | |
if log_model_env.upper() in ENV_VARS_TRUE_VALUES: | |
self._log_model = True | |
elif log_model_env.lower() == "all": | |
self._log_model = "all" | |
if state.is_world_process_zero: | |
if not self.live: | |
self.live = Live() | |
self.live.log_params(args.to_dict()) | |
def on_train_begin(self, args, state, control, model=None, **kwargs): | |
if not self._initialized: | |
self.setup(args, state, model) | |
def on_log(self, args, state, control, model=None, logs=None, **kwargs): | |
if not self._initialized: | |
self.setup(args, state, model) | |
if state.is_world_process_zero: | |
from dvclive.plots import Metric | |
from dvclive.utils import standardize_metric_name | |
for key, value in logs.items(): | |
if Metric.could_log(value): | |
self.live.log_metric(standardize_metric_name(key, "dvclive.huggingface"), value) | |
else: | |
logger.warning( | |
"Trainer is attempting to log a value of " | |
f'"{value}" of type {type(value)} for key "{key}" as a scalar. ' | |
"This invocation of DVCLive's Live.log_metric() " | |
"is incorrect so we dropped this attribute." | |
) | |
self.live.next_step() | |
def on_save(self, args, state, control, **kwargs): | |
if self._log_model == "all" and self._initialized and state.is_world_process_zero: | |
self.live.log_artifact(args.output_dir) | |
def on_train_end(self, args, state, control, **kwargs): | |
if self._initialized and state.is_world_process_zero: | |
from transformers.trainer import Trainer | |
if self._log_model is True: | |
fake_trainer = Trainer(args=args, model=kwargs.get("model"), tokenizer=kwargs.get("tokenizer")) | |
name = "best" if args.load_best_model_at_end else "last" | |
output_dir = os.path.join(args.output_dir, name) | |
fake_trainer.save_model(output_dir) | |
self.live.log_artifact(output_dir, name=name, type="model", copy=True) | |
self.live.end() | |
INTEGRATION_TO_CALLBACK = { | |
"azure_ml": AzureMLCallback, | |
"comet_ml": CometCallback, | |
"mlflow": MLflowCallback, | |
"neptune": NeptuneCallback, | |
"tensorboard": TensorBoardCallback, | |
"wandb": WandbCallback, | |
"codecarbon": CodeCarbonCallback, | |
"clearml": ClearMLCallback, | |
"dagshub": DagsHubCallback, | |
"flyte": FlyteCallback, | |
"dvclive": DVCLiveCallback, | |
} | |
def get_reporting_integration_callbacks(report_to): | |
for integration in report_to: | |
if integration not in INTEGRATION_TO_CALLBACK: | |
raise ValueError( | |
f"{integration} is not supported, only {', '.join(INTEGRATION_TO_CALLBACK.keys())} are supported." | |
) | |
return [INTEGRATION_TO_CALLBACK[integration] for integration in report_to] | |